જો $A$ અને $B$ બે નિરપેક્ષ ઘટનાઓ હોય, તો સાબિત કરો કે $A$ અને $B$ માંથી ઓછામાં ઓછી એક ઘટના ઉદ્ભવવાની સંભાવના $1 -P(A') P(B')$ છે.
We have
$P($ at least one of $A $ and $ B)=P(A \cup B)$
$=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A} \cap \mathrm{B})$
$=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A}) \mathrm{P}(\mathrm{B}$
$=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})[1-\mathrm{P}(\mathrm{A})]$
$=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B}) . \mathrm{P}\left(\mathrm{A}^{\prime}\right)$
$=1-\mathrm{P}\left(\mathrm{A}^{\prime}\right)+\mathrm{P}(\mathrm{B}) \mathrm{P}\left(\mathrm{A}^{\prime}\right)$
$=1-P\left(A^{\prime}\right)[1-P(B)]$
$=1-P\left(A^{\prime}\right) P\left(B^{\prime}\right)$
જો $A, B, C$ અનુક્રમે $5$ માંથી $4$ વાર, $4$ માંથી $3$ વાર અને $3$ માંથી $2$ વાર નિશાન સાધી શકે છે તો, તે પૈકી ચોક્કસ બે નિશાન સાધી શકે તેવી સંભાવના કેટલી થાય ?
ઘટના ${\text{A, B}}$ છે $P(A \cup B)\,\, = \,\,\frac{3}{4},\,P(A \cap B)\,\, = \,\,\frac{1}{4},\,P(A')\,\, = \,\,\frac{2}{3}$ તો ${\text{P (A' }} \cap {\text{ B)}} = ......$
જો $A$ અને $B$ એ કોઈ ઘટનાઓ હોય તો, તેમાંથી ફક્ત એક જ ઘટના બનવાની શક્યતા કેટલી?
$A$ અને $B$ માંથી ઓછામાં ઓછી એક ઘટના બનવાની સંભાવના $0.6$ છે. જો $A$ અને $B$ એક સાથે બનવાની સંભાવના $0.3$, હોય તો $P (A') + P (B') = ……$
જો $A$ અને $B$ એ ઘટના છે,તો બંને માંથી કોઇ એકજ ઉદ્રભવે તેની સંભાવના મેળવો.