જો $q$ એ મિથ્યા અને $p\, \wedge \,q\, \leftrightarrow \,r$ એ સાચું હોય તો નીચેનામાંથી ક્યું વિધાન નિત્ય સત્ય થાય ?
$(p\, \vee \,r\,)\, \to \,(p\, \wedge \,r)$
$(p\, \wedge \,r\,)\, \to \,(p\, \vee \,r)$
$p\, \wedge \,r$
$p\, \vee \,r$
નીચેના પૈકી કયું નિત્ય સત્ય વિધાન નથી.
વિધાન $\sim p \wedge(p \vee q)$ નું નિષેધ ...... છે.
વિધાન $B \Rightarrow((\sim A ) \vee B )$ એ $............$ને સમકક્ષ છે.
આપેલ વિધાનને ધ્યાનથી જુઓ:
$P$: “સુમન હોશિયાર છે.” $Q$: “સુમન અમીર છે.” $R$: “સુમન પ્રમાણિક છે.” તો “જો સુમન એ અમીર હોય તો અને માત્ર તોજ સુમન એ હોશિયાર અને અપ્રમાણિક હોય. ” આપેલ વિધાનનુ નિષેધ કરો.
ધારો કે $\Delta \in\{\wedge, \vee, \Rightarrow, \Leftrightarrow\}$ એવું છે કે જેથી $(p \wedge q) \Delta((p \vee q) \Rightarrow q)$ નિત્યસત્ય થાય, તો $\Delta=\dots\dots\dots$