If $q$ is false and $p\, \wedge \,q\, \leftrightarrow \,r$ is true, then which one of the following statements is a tautology?
$(p\, \vee \,r\,)\, \to \,(p\, \wedge \,r)$
$(p\, \wedge \,r\,)\, \to \,(p\, \vee \,r)$
$p\, \wedge \,r$
$p\, \vee \,r$
Among the statements:
$(S1)$ $\quad(( p \vee q ) \Rightarrow r ) \Leftrightarrow( p \Rightarrow r )$
$(S2) \quad(( p \vee q ) \Rightarrow r ) \Leftrightarrow(( p \Rightarrow r ) \vee( q \Rightarrow r ))$
If $p : 5$ is not greater than $2$ and $q$ : Jaipur is capital of Rajasthan, are two statements. Then negation of statement $p \Rightarrow q$ is the statement
If $p \to ( \sim p\,\, \vee \, \sim q)$ is false, then the truth values of $p$ and $q$ are respectively .
Let $p$ and $q$ denote the following statements
$p$ : The sun is shining
$q$ : I shall play tennis in the afternoon
The negation of the statement "If the sun is shining then I shall play tennis in the afternoon", is
The Boolean expression $(\mathrm{p} \wedge \mathrm{q}) \Rightarrow((\mathrm{r} \wedge \mathrm{q}) \wedge \mathrm{p})$ is equivalent to :