જો $y = 3[x] + 1 = 4[x -1] -10$ હોય તો $[x + 2y]$ = ........... (જ્યા $[.]$ = $G.I.F.$)
$76$
$61$
$107$
$67$
ધારોક $f, g: N -\{1\} \rightarrow N$ એ નીચે મુજબ વ્યાખ્યાયિત વિધેયો છે: $f(a)=a$, જ્યાં $\alpha$ એ એવા અવિભાજ્યો $p$ ની ધાતોમાંની મહ્ત્તમ ધાત છે કે જેથી $p^{\alpha}$ વડે $a$ વિભાજ્ય હોય, અને $g(a)=a+1$, પ્રત્યેક $a \in N -\{1\}$, તો વિધેય $f+g$ એ
જો $f(x) = \frac{{\alpha \,x}}{{x + 1}},\;x \ne - 1$. તો, $\alpha $ ની . . . . કિમત માટે $f(f(x)) = x$ થાય.
જો $f(x) = \cos (\log x)$, તો $f({x^2})f({y^2}) - \frac{1}{2}\left[ {f\,\left( {\frac{{{x^2}}}{2}} \right) + f\left( {\frac{{{x^2}}}{{{y^2}}}} \right)} \right] =$
જો $f(x) = 2\sin x$, $g(x) = {\cos ^2}x$, તો $(f + g)\left( {\frac{\pi }{3}} \right) = $
જો $E = \{ 1,2,3,4\} $ અને $F = \{ 1,2\} $.તો $E$ થી $F$ પરના વ્યાપ્ત વિધેય ની સંખ્યા મેળવો.