ધારોક $f, g: N -\{1\} \rightarrow N$ એ નીચે મુજબ વ્યાખ્યાયિત વિધેયો છે: $f(a)=a$, જ્યાં $\alpha$ એ એવા અવિભાજ્યો $p$ ની ધાતોમાંની મહ્ત્તમ ધાત છે કે જેથી $p^{\alpha}$ વડે $a$ વિભાજ્ય હોય, અને $g(a)=a+1$, પ્રત્યેક $a \in N -\{1\}$, તો વિધેય $f+g$ એ
એક-એક છે પણ વ્યાપ્ત નથી
વ્યાપ્ત છે પણ એક-એક નથી
એક-એક અને વ્યાપ્ત બંને છે
એક-એક પણ નથી અને વ્યાપ્ત પણ નથી
જો $A = \{ {x_1},\,{x_2},\,............,{x_7}\} $ અને $B = \{ {y_1},\,{y_2},\,{y_3}\} $ બે ગણ છે કે જે અનુક્રમે સાત અને ત્રણ ઘટકો ધરાવે છે . તો ગણ $A$ માં બરાબર ત્રણ ઘટકો હોય કે જેથી $f(x)\, = y_2$ થાય તેવા $f : A \to B$ પરના વ્યાપ્ત વિધેય ની સંખ્યા મેળવો.
ધારો કે $f(x)$ એ દ્રીધાત બહુપદી છે કે જેથી $f(-2)+f(3)=0$. જેથી $f(x)=0$ નું કોઈ એક બીજ $-1$ હોય, તો $f(x)=0$ ના બીજો નો સરવાળો........છે.
જો $y = f(x) = \frac{{ax + b}}{{cx - a}}$, તો $x$ મેળવો
જો $f :R \to R$ ; $f(x)\,\, = \,\,\frac{x}{{1 + {x^2}}},\,x\, \in \,R$ હોય તો $f$ નો વિસ્તાર મેળવો.
જો ${x_1},{x_2} \in [ - 1,\,1]$ માટે $f({x_1}) - f({x_2}) = f\left( {\frac{{{x_1} - {x_2}}}{{1 - {x_1}{x_2}}}} \right)$, તો $f(x) =$