જો $f(x) = \cos (\log x)$, તો $f({x^2})f({y^2}) - \frac{1}{2}\left[ {f\,\left( {\frac{{{x^2}}}{2}} \right) + f\left( {\frac{{{x^2}}}{{{y^2}}}} \right)} \right] =$

  • A

    $-2$

  • B

    $-1$

  • C

    $1/2$

  • D

    એકપણ નહી.

Similar Questions

ધારો કે $x$ એ $3$ ઘટકોવાળા ગણ $A$ થી $5$ ઘટકોવાળા ગણ $B$ પરના એક-એક વિધેયોની કુલ સંખ્યા દર્શાવે છે. અને $y$ એ ગણ $A$ થી ગણ $A \times B$ પરના એક-એક વિધેયોની કુલ સંખ્યા દર્શાવે છે. તો :

  • [JEE MAIN 2021]

ધારો કે $f= R \rightarrow(0, \infty)$ વિકલનીય વિધેય છે,જ્યાં $5 f(x+y)=f(x) . f(y), \forall x, y \in R$. જો $f(3)=320$ હોય,તો $\sum \limits_{ n =0}^5 f( n )=.......$

  • [JEE MAIN 2023]

$f :\{1,3,5, 7, \ldots \ldots . .99\} \rightarrow\{2,4,6,8, \ldots \ldots, 100\}$ પરના એક-એક અને વ્યાપ્ત વિધેયની સંખ્યા મેળવો કે જેથી $f(3) \geq f(9) \geq f(15) \geq f(21) \geq \ldots \ldots f(99), \quad$ થાય.

  • [JEE MAIN 2022]

જો $f(x)=\frac{\left(\tan 1^{\circ}\right) x+\log _{\varepsilon}(123)}{x \log _{\varepsilon}(1234)-\left(\tan 1^{\circ}\right)}, x > 0$, હોય તો $f(f(x))+f\left(f\left(\frac{4}{x}\right)\right)$નું ન્યૂનતમ $...........$.

  • [JEE MAIN 2023]

જો $x = {\log _2}\left( {\sqrt {56 + \sqrt {56 + \sqrt {56 +  .... + \infty } } } } \right)$ હોય તો $x$ ની કિમત .......... થાય.