જો $f(x) = \frac{{\alpha \,x}}{{x + 1}},\;x \ne - 1$. તો, $\alpha $ ની . . . . કિમત માટે $f(f(x)) = x$ થાય.
$\sqrt 2 $
$ - \sqrt 2 $
$1$
$-1$
વિધેય $f(x)=\frac{1}{\sqrt{[x]^2-3[x]-10}}$ નો પ્રદેશ $...........$ છે.
(જ્યાં [x] એ $\leq x$ અથવા તેનાથી નાનો મહત્તમ પૂર્ણાક દર્શાવે છે.)
જો $f\left( x \right) = {\left( {\frac{3}{5}} \right)^x} + {\left( {\frac{4}{5}} \right)^x} - 1$ , $x \in R$ તો સમીકરણ $f(x) = 0$ ને . . . .
$\left[ {\frac{1}{2}} \right] + \left[ {\frac{1}{2} + \frac{1}{{100}}} \right] + \left[ {\frac{1}{2} + \frac{2}{{100}}} \right] + .... + \left[ {\frac{1}{2} + \frac{{99}}{{100}}} \right] = . . . . $ (કે જ્યાં $[x]$ એ મહતમ પૃણાંક વિધેય છે )
જો $f( x + y )=f( x ) f( y )$ અને $\sum \limits_{ x =1}^{\infty} f( x )=2, x , y \in N$ જ્યાં $N$ એ બધી પ્રાકૃતિક સંખ્યાઓનો ગણ હોય તો $\frac{f(4)}{f(2)}$ ની કિમત શોધો
જો $f :R \to R$ ; $f(x)\,\, = \,\,\frac{x}{{1 + {x^2}}},\,x\, \in \,R$ હોય તો $f$ નો વિસ્તાર મેળવો.