$DAUGHTER$ शब्द के अक्षरों से, कितने अर्थपूर्ण या अर्थहीन शब्दों की रचना की जा सकती है, जबकि प्रत्येक शब्द में $2$ स्वर तथा $3$ व्यंजन हों ?

Vedclass pdf generator app on play store
Vedclass iOS app on app store

In the word $DAUGHTER$, there are $3$ vowels namely, $A, U,$ and $E$ and $5$ consonants, namely, $D , G , H , T ,$ and $R.$

Number of ways of selecting $2$ vowels of $3$ vowels $=\,^{3} C_{2}=3$

Number of ways of selecting $3$ consonants out of $5$ consonants $=\,^{5} C_{3}=10$

Therefore, number of combinations of $2$ vowels and $3$ consonants $=3 \times 10=30$

Each of these $30$ combinations of $2$ vowels and $3$ consonants can be arranged among themselves in $5 !$ ways.

Hence, required number of different words $=30 \times 5 !=3600$

Similar Questions

केवल अंको $1,2,3$ तथा $4$ के प्रयोग से बनने वाले सात अंकों के धनात्मक पूर्णांकों, जिनके अंको का योग $12$ है, की संख्या है_______

  • [JEE MAIN 2023]

$^{15}{C_3}{ + ^{15}}{C_{13}}$ का मान होगा

माना समुच्चयों $\mathrm{A}$ तथा $\mathrm{B}$ में अवयवों की संख्या क्रमशः पाँच तथा दो है। तो $\mathrm{A} \times \mathrm{B}$ के उपसमुच्चयों, जिनमें कम से कम $3$ तथा अधिक से अधिक $6$ अवयव हो, की संख्या है :

  • [JEE MAIN 2023]

$^{n - 1}{C_r} = ({k^2} - 3)\,.{\,^n}{C_{r + 1}}$, यदि $k \in $

  • [IIT 2004]

$\sum\limits_{r = 0}^m {^{n + r}{C_n} = } $