$'K'$ के मानो की संख्या, जिनके लिए समीकरण निकाय

$(k+1) x+8 y=4 k$

$k x+(k+3) y=3 k-1$

के पास कोई हल नहीं है, है

  • [JEE MAIN 2013]
  • [IIT 2002]
  • A

    अनन्त

  • B

    $1$

  • C

    $2$

  • D

    $3$

Similar Questions

यदि $\left|\begin{array}{ccc}x+1 & x & x \\ x & x+\lambda & x \\ x & x & x+\lambda^2\end{array}\right|=\frac{9}{8}(103 x+81)$ है, तो $\lambda, \frac{\lambda}{3}$ किस समीकरण के मूल हैं ?

  • [JEE MAIN 2023]

$\lambda$ के वास्तविक मानों, जिनके लिए रैखिक समीकरण निकाय

$2 x -3 y +5 z =9$

$x +3 y - z =-18$

$3 x - y +\left(\lambda^2-|\lambda|\right) z =16$

का कोई हल नहीं है, की संख्या है :-

  • [JEE MAIN 2022]

यदि $\Delta = \left| {\,\begin{array}{*{20}{c}}x&y&z\\p&q&r\\a&b&c\end{array}\,} \right|,$ तो  $\left| {\,\begin{array}{*{20}{c}}x&{2y}&z\\{2p}&{4q}&{2r}\\a&{2b}&c\end{array}\,} \right|$ का मान होगा

माना सभी $\lambda \in R$ का समुच्चय $S$ है जिसके लिए रैखिक समीकरणों के निकाय $2 x-y+2 z=2 ; x-2 y+\lambda z=-4$ और $x+\lambda y+z=4$ का कोई हल नही है। तो समुच्चय $S:$

  • [JEE MAIN 2020]

धनात्मक संख्यायें $x,y$ और $z $ के लिये सारणिक $\left| {\,\begin{array}{*{20}{c}}1&{{{\log }_x}y}&{{{\log }_x}z}\\{{{\log }_y}x}&1&{{{\log }_y}z}\\{{{\log }_z}x}&{{{\log }_z}y}&1\end{array}\,} \right|$ का आंकिक मान है

  • [IIT 1993]