સમગુણોત્તર શ્રેણી $3, \frac{3}{2}, \frac{3}{4}, \ldots$ ના પ્રથમ કેટલાં પદોનો સરવાળો $\frac{3069}{512}$ થાય ?
Let $n$ be the number of terms needed. Given that $a=3, r=\frac{1}{2}$ and $S_{n}=\frac{3069}{512}$
Since $S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}$
Therefore $\frac{3069}{512}=\frac{3\left(1-\frac{1}{2^{n}}\right)}{1-\frac{1}{2}}=6\left(1-\frac{1}{2^{n}}\right)$
or $\frac{3069}{3072}=1-\frac{1}{2^{n}}$
or $\frac{1}{2^{n}}=1-\frac{3069}{3072}=\frac{3}{3072}=\frac{1}{1024}$
or $2^{n}=1024=2^{10},$ which gives $n=10$
જો સામાન્ય ગુણોત્તર $r (r>1)$ વાળી એક ગુણોત્તર શ્રેણી ($G.P.$) ના ત્રણ ક્રમિક પદો , એ એક ત્રિકોણની ત્રણ બાજુઓની લંબાઈઓ છે અને $[\mathrm{r}]$ એ $\mathrm{r}$ કે તેથી નાનો હોય તેવો મહત્તમ પૂણાંક દર્શાવે છે, તો $3[\mathrm{r}]+[-\mathrm{r}]=$___________.
જો $a, b$ અને $c$ એ સમગુણોત્તર શ્રેણીની ત્રણ ભિન્ન સંખ્યા છે અને $a + b + c = xb$ થાય તો $x$ ની કિમત ...... હોઈ શકે નહીં.
$155$ ના એવા ત્રણ ભાગ પાડો કે જેથી ત્રણેય સંખ્યાઓ સમગુણોત્તર શ્રેણીમાં હોય અને પ્રથમ પદ એ તેના ત્રીજા પદ કરતાં $120$ ઓછું હોય.
જો સમગુણોત્તર શ્રેણીના ચાર ધન ક્રમિક પદોના સરવાળા તથા ગુણાકાર અનુક્રમે $126$ અને $1296$ હોય, તો આવી દરેક સમગુણોત્તર શ્રેણીનાં સામાન્ય ગુણોત્તરોનો સરવાળો $.............$ છે.
જો $\sum\limits_{{\text{r}}\, = \,{\text{1}}}^\infty {\frac{1}{{{{(2r\, - \,1)}^2}}}\,\, = \,\,\frac{{{\pi ^2}}}{8}} $ હોય, તો $\,\sum\limits_{{\text{r}}\, = \,{\text{1}}}^\infty {\frac{1}{{{r^2}}}\,\, = \,\,.........} $