$155$ ના એવા ત્રણ ભાગ પાડો કે જેથી ત્રણેય સંખ્યાઓ સમગુણોત્તર શ્રેણીમાં હોય અને પ્રથમ પદ એ તેના ત્રીજા પદ કરતાં $120$ ઓછું હોય.
$5, 65, 125$
$10, 65, 120$
$5, 25, 125$
આપેલ પૈકી એક પણ નહિ
સમગુણોત્તર શ્રેણીનું પ્રથમ પદ $a$ અને $n$ મું પદ છે. જો $n$ પદોનો ગુણાકાર $P$ હોય, તો સાબિત કરો કે $P^{2}=(a b)^{n}$
જો ${a_1},{a_2}...,{a_{10}}$ એ સમગુણોત્તર શ્રેણીના પદો હોય અને $\frac{{{a_3}}}{{{a_1}}} = 25$ થાય તો $\frac {{{a_9}}}{{{a_{ 5}}}}$ ની કિમત મેળવો.
અનંત સમગુણોત્તર શ્રેણીનું પ્રથમ પદ $1$ અને દરેક પદ તેના પછીના પદોના સરવાળા જેટલું હોય, તો તેનું ચોથું પદ કયું હશે ?
જો $x > 1,\;y > 1,z > 1$ એ સમગુણોતર શ્નેણીમાં હોયતો $\frac{1}{{1 + {\rm{In}}\,x}},\;\frac{1}{{1 + {\rm{In}}\,y}},$ $\;\frac{1}{{1 + {\rm{In}}\,z}}$ એ _______ માં છે.
જો $a, b, c$, અને $ p$ ભિન્ન વાસ્તવિક સંખ્યાઓ હોય અને $\left(a^{2}+b^{2}+c^{2}\right) p^{2}-2(a b+b c+c d) p+\left(b^{2}+c^{2}+d^{2}\right)\, \leq \,0,$ તો બતાવો કે $a, b, c$ અને $d$ સમગુણોત્તર શ્રેણીમાં છે.