$A$ और $B$ स्वतंत्र घटनाएँ दी गई हैं जहाँ $P ( A )=0.3, P ( B )=0.6$ तो $P ( A$ और $B$ -नहीं $)$ का मान ज्ञात कीजिए।

Vedclass pdf generator app on play store
Vedclass iOS app on app store

It is given that $\mathrm{P}(\mathrm{A})=0.3, \,\mathrm{P}(\mathrm{B})=0.6$

Also, $A$ and $B$ are independent events.

$\mathrm{P}(\mathrm{A}$ and not $\mathrm{B})=\mathrm{P}(\mathrm{A} \cap \mathrm{B})^{\prime}$

$=\mathrm{P}(\mathrm{A})-\mathrm{P}(\mathrm{A} \cap \mathrm{B})$

$=0.3-0.18$

$=0.12$

Similar Questions

यदि एक घटना के प्रतिकूल संयोगानुपात $2 : 3$ हो, तो उसके घटने की प्रायिकता है

एक परीक्षण (experiment) पर विचार कीजिए जिसमें एक सिक्के को बार बार लगातार उछाला जाता है और जैसे ही दो क्रमागत (consecutive) उछालों का परिणाम (outcome) समान आता है, परीक्षण रोक दिया जाता है। यदि एक याद्धच्छिक उछाल का परिणाम चित्त में (random toss resulting in head) होने की प्रायिकता $\frac{1}{3}$ है, तब परीक्षण के चित्त (head) के साथ रुकने कि प्रायिकता है

  • [IIT 2023]

यदि $P(A) = 2/3$, $P(B) = 1/2$ तथा ${\rm{ }}P(A \cup B) = 5/6$ तब घटनायें $A$ तथा $B$ हैं

यदि $E$ और $F$ घटनाएँ इस प्रकार हैं कि $P ( E )=\frac{1}{4}, P ( F )=\frac{1}{2}$ और $P ( E$ और $F )=\frac{1}{8},$ तो ज्ञात कीजिए $P ( E$ या $F )$

यदि तीन विद्यार्थियों द्वारा प्रश्न को हल करने के प्रतिकूल संयोगानुपात क्रमश: $2 : 1 ,  5:2$ व $5:3$ है, तब प्रश्न एक ही विद्याथि द्वारा हल करने की प्रायिकता है