दो गेंद एक बॉक्स से बिना प्रतिस्थापित किए निकाली जाती है। बॉक्स में $10$ काली और $8$ लाल गेदें हैं तो प्रायिकता ज्ञात कीजिए दोनों गेंदें लाल हो।
Total number of balls $=18$
Number of red balls $=8$
Number of black balls $=10$
Probability of getting a red ball in the first draw $=\frac{8}{18}=\frac{4}{9}$
The ball is replaced after the first draw.
$\therefore$ Probability of getting a red ball in the second draw $=\frac{8}{18}=\frac{4}{9}$
Therefore, probability of getting both the balls red $=\frac{4}{9} \times \frac{4}{9}=\frac{16}{81}$
एक विद्यार्थी के अंतिम परीक्षा के अंग्रेजी और हिंदी दोनों विषयों को उत्तीर्ण करने की प्रायिकता $0.5$ है और दोनों में से कोई भी विषय उत्तीर्ण न करने की प्रायिकता $0.1$ है। यदि अंग्रेज़ी की परीक्षा उत्तीर्ण करने की प्रायिकता $0.75$ हो तो हिंदी की परीक्षा उत्तीर्ण करने की प्रायिकता क्या है ?
दो गेंद एक बॉक्स से बिना प्रतिस्थापित किए निकाली जाती है। बॉक्स में $10$ काली और $8$ लाल गेदें हैं तो प्रायिकता ज्ञात कीजिए एक काली तथा दूसरी लाल हो।
यदि $E$ व $F$ स्वतंत्र घटनायें इस प्रकार हैं कि $0 < P(E) < 1$ और $0 < P\,(F) < 1,$ तो
$P ( A )=\frac{3}{5}$ और $P ( B )=\frac{1}{5},$ दिया गया है। यदि $A$ और $B$ परस्पर अपवर्जी घटनाएँ हैं, तो $P ( A$ या $B$ ), ज्ञात कीजिए।
$A$ तथा $B$ एक यादृच्छिक प्रयोग की दो घटनाएँ हैं और $P\,(A) = 0.25$, $P\,(B) = 0.5$ तथा $P\,(A \cap B) = 0.15,$ तो $P\,(A \cap \bar B) = $