$\frac{1+\tan ^{2} A}{1+\cot ^{2} A}=........$
$\sec ^{2} A$
$-1$
$\cot ^{2} A$
$\tan ^{2} A$
Prove the following identities, where the angles involved are acute angles for which the expressions are defined.
$\frac{\cos A-\sin A+1}{\cos A+\sin A-1}=\operatorname{cosec} A+\cot A,$ using the identity $\operatorname{cosec}^{2} A=1+\cot ^{2} A$
In a right triangle $A B C$, right-angled at $B$. if $\tan A =1,$ then verify that $2 \sin A \cos A=1$
In $Fig.$ find $\tan P-\cot R .$
In triangle $ABC ,$ right -angled at $B ,$ if $\tan A =\frac{1}{\sqrt{3}},$ find the value of:
$(i)$ $\sin A \cos C+\cos A \sin C$
$(ii)$ $\cos A \cos C-\sin A \sin C$
Evaluate:
$\frac{\sin 18^{\circ}}{\cos 72^{\circ}}$