Prove that

$\frac{\sin \theta-\cos \theta+1}{\sin \theta+\cos \theta-1}=\frac{1}{\sec \theta-\tan \theta},$ using the identity

$\sec ^{2} \theta=1+\tan ^{2} \theta$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Since we will apply the identity involving $\sec \theta$ and $\tan \theta,$ let us first convert the $LHS$ (of the identity we need to prove) in terms of $\sec \theta$ and $\tan \theta$ by dividing numerator and denominator by $\cos \theta .$

$LHS=\frac{\sin \theta-\cos \theta+1}{\sin \theta+\cos \theta-1}=\frac{\tan \theta-1+\sec \theta}{\tan \theta+1-\sec \theta}$

$=\frac{(\tan \theta+\sec \theta)-1}{(\tan \theta-\sec \theta)+1}=\frac{\{(\tan \theta+\sec \theta)-1\}(\tan \theta-\sec \theta)}{\{(\tan \theta-\sec \theta)+1\}(\tan \theta-\sec \theta)}$

$=\frac{\left(\tan ^{2} \theta-\sec ^{2} \theta\right)-(\tan \theta-\sec \theta)}{\{\tan \theta-\sec \theta+1\}(\tan \theta-\sec \theta)}$

$=\frac{-1-\tan \theta+\sec \theta}{(\tan \theta-\sec \theta+1)(\tan \theta-\sec \theta)}$

$=\frac{-1}{\tan \theta-\sec \theta}=\frac{1}{\sec \theta-\tan \theta}$

which is the RHS of the identity, we are required to prove.

Similar Questions

Prove the following identities, where the angles involved are acute angles for which the expressions are defined.

$\frac{\cos A}{1+\sin A}+\frac{1+\sin A}{\cos A}=2 \sec A$

If $A , B$ and $C$ are interior angles of a triangle $ABC ,$ then show that

$\sin \left(\frac{B+C}{2}\right)=\cos \frac{A}{2}$

In $Fig.$ find $\tan P-\cot R .$

Express $\cot 85^{\circ}+\cos 75^{\circ}$ in terms of trigonometric ratios of angles between $0^{\circ}$ and $45^{\circ}$

Prove the following identities, where the angles involved are acute angles for which the expressions are defined.

$(\operatorname{cosec} \theta-\cot \theta)^{2}=\frac{1-\cos \theta}{1+\cos \theta}$