$\frac{2 \tan 30^{\circ}}{1+\tan ^{2} 30^{\circ}}=$

  • A

    $\cos 60^{\circ}$

  • B

    $\sin 60^{\circ}$

  • C

    $\tan 60^{\circ}$

  • D

    $\sin 30^{\circ}$

Similar Questions

Given $\sec \theta=\frac{13}{12},$ calculate all other trigonometric ratios.

Evaluate the following:

$2 \tan ^{2} 45^{\circ}+\cos ^{2} 30^{\circ}-\sin ^{2} 60^{\circ}$

$\sin 2 A=2 \sin A$ is true when $A=$

Evaluate the following:

$\sin 60^{\circ} \cos 30^{\circ}+\sin 30^{\circ} \cos 60^{\circ}$

If $\angle A$ and $\angle B$ are acute angles such that $\cos A =\cos B ,$ then show that $\angle A =\angle B$.