वृत्त ${x^2} + {y^2} + 2x + 8y - 23 = 0$ और ${x^2} + {y^2} - 4x - 10y + 9 = 0$ की उभयनिष्ठ स्पर्श रेखाओं की संख्या है
$1$
$3$
$2$
इनमें से कोई नहीं
$\lambda $ का वह मान जिसके लिये वृत्त ${x^2} + {y^2} + 2\lambda x + 6y + 1 = 0$ व ${x^2} + {y^2} + 4x + 2y = 0$ लम्बवत् प्रतिच्छेदित करते हैं, है
उस वृत्त का समीकरण जो वृत्त ${x^2} + {y^2} - 6x + 6y + 17 = 0$ को बाह्यत: स्पर्श करता है एवं जिस पर रेखायें ${x^2} - 3xy - 3x + 9y = 0$ अभिलम्ब हैं, है
बिन्दु $(a, b)$ से जाने वाले वृत्त के केन्द्र का बिन्दुपथ जो वृत्त ${x^2} + {y^2} = {p^2}$ को समकोण पर काटता है, है
वृत्त ${x^2} + {y^2} = 1$ और ${x^2} + {y^2} - 4x + 3 = 0$ की उभयनिष्ठ स्पर्श रेखाओं की संख्या है
वृतों $x ^{2}+ y ^{2}=4$ तथा $x ^{2}+ y ^{2}+6 x +8 y -24=0$ की उभयनिष्ट स्पर्श रेखा निम्न में से किस बिन्दु से होकर जाती है ?