$\lambda $ का वह मान जिसके लिये वृत्त ${x^2} + {y^2} + 2\lambda x + 6y + 1 = 0$ व ${x^2} + {y^2} + 4x + 2y = 0$ लम्बवत् प्रतिच्छेदित करते हैं, है
$\frac{{ - 5}}{2}$
$ - 1$
$\frac{{ - 11}}{8}$
$\frac{{ - 5}}{4}$
वृत्तों $3{x^2} + 3{y^2} - 7x + 8y + 11 = 0$ तथा ${x^2} + {y^2} - 3x - 4y + 5 = 0$ का मूलाक्ष है
एक वृत्त जिसकी त्रिज्या $12$ है, प्रथम पाद में स्थित है तथा दोनों अक्षों को स्पर्श करता है। एक दूसरे वृत्त का केन्द्र $(8,9)$ तथा त्रिज्या $7$ है। निम्न में से कौनसा कथन सत्य है
यदि दो वृत्त ${(x - 1)^2} + {(y - 3)^2} = {r^2}$ तथा ${x^2} + {y^2} - 8x + 2y + 8 = 0$ दो भिन्न - भिन्न बिन्दुओं पर प्रतिच्छेद करते हों, तो
वृत्तों $x^{2}+y^{2}-4 x-6 y-12=0$ तथा $x^{2}+y^{2}+6 x+18 y+26=0$ की उभयनिष्ठ स्पर्श रेखाओं की संख्या है
वृत्त ${x^2} + {y^2} - 2x - 4y = 0$ व ${x^2} + {y^2} - 8y - 4 = 0$