The smallest positive angle which satisfies the equation $2{\sin ^2}\theta + \sqrt 3 \cos \theta + 1 = 0$, is

  • A

    $\frac{{5\pi }}{6}$

  • B

    $\frac{{2\pi }}{3}$

  • C

    $\frac{\pi }{3}$

  • D

    $\frac{\pi }{6}$

Similar Questions

The real roots of the equation $cos^7x\,  +\,  sin^4x\,  =\,  1$  in the interval $(-\pi, \pi)$ are

The general value of $\theta $ satisfying the equation $\tan \theta + \tan \left( {\frac{\pi }{2} - \theta } \right) = 2$, is

If $\cot \theta + \tan \theta = 2{\rm{cosec}}\theta $, the general value of $\theta $ is

Number of solutions of $8cosx$ = $x$ will be 

If $\cos \theta + \cos 2\theta + \cos 3\theta = 0$, then the general value of $\theta $ is