ઉગમબિદુમાંથી વર્તૂળ ${(x - 1)^2} + {y^2} = 1$ પર જીવા દોરવાંમા આવે છે. તો આ જીવાના મધ્યબિંદુના બિંદુપથનું સમીકરણ મેળવો.
${x^2} + {y^2} - 3x = 0$
${x^2} + {y^2} - 3y = 0$
${x^2} + {y^2} - x = 0$
${x^2} + {y^2} - y = 0$
રેખા $3x - 4y = 0$ એ :
રેખાઓ $12x - 5y - 17 = 0$ અને $24x - 10y + 44 = 0$ સમાન વર્તૂળના સ્પર્શકો તો વર્તૂળની ત્રિજ્યા :
જો વર્તુળ $x^{2}+y^{2}=25$ નો બિંદુ $R (3,4)$ આગળનો સ્પર્શકએ $x$ -અક્ષ અને $y$ -અક્ષને અનુક્રમે બિંદુ $P$ અને $Q$ આગળ છેદે છે અને જો $r$ એ ઉગમબિંદુ કેન્દ્ર અને જેનું કેન્દ્ર ત્રિકોણ $OPQ$ નું અંત:કેન્દ્ર હોય તેવા વર્તુળની ત્રિજ્યા છે તો $r ^{2}$ મેળવો.
જો વર્તુળ $x ^2+ y ^2-2 x + y =5$ ના બિંદુઓ $P$ અને $Q$ આગળ ના સ્પર્શકોએ $R \left(\frac{9}{4}, 2\right)$ આગળ છેદે છે તો ત્રિકોણ $PQR$ નું ક્ષેત્રફળ મેળવો.
જો બિંદુ $P$ માંથી વર્તૂળો $x^{2} + y^{2} = a^2 \,\,, x^2 + y^{2} = b^2$ અને $x^{2} + y^{2} = c^{2}$ પર દોરેલા સ્પર્શકોની લંબાઈનો વર્ગ સમાંતર શ્રેણીમાં હોય, તો.....