જો વર્તુળ $x^{2}+y^{2}=25$ નો બિંદુ $R (3,4)$ આગળનો સ્પર્શકએ $x$ -અક્ષ અને $y$ -અક્ષને અનુક્રમે બિંદુ $P$ અને $Q$ આગળ છેદે છે અને જો $r$ એ ઉગમબિંદુ કેન્દ્ર અને જેનું કેન્દ્ર ત્રિકોણ $OPQ$ નું અંત:કેન્દ્ર હોય તેવા વર્તુળની ત્રિજ્યા છે તો $r ^{2}$ મેળવો.
$\frac{529}{64}$
$\frac{125}{72}$
$\frac{625}{72}$
$\frac{585}{66}$
બિંદુ $\mathrm{P}(-1,1)$ માંથી વર્તુળ $\mathrm{x}^{2}+\mathrm{y}^{2}-2 \mathrm{x}-6 \mathrm{y}+6=0$ પર બે સ્પર્શકો દોરવામાં આવે છે. જો સ્પર્શકો વર્તુળને બિંદુઓ $A$ અને $B$ આગળ સ્પર્શે છે અને જો બિંદુ $D$ એ વર્તુળ પરનું બિંદુ છે કે જેથી $A B$ અને $A D$ ની લંબાઈ સમાન થાય છે તો ત્રિકોણ $A B D$ નું ક્ષેત્રફળ મેળવો.
જો બિંદુ $(p, q)$ માંથી વર્તૂળ $x^{2} + y^{2} = px + qy$ (જ્યાં $pq \neq 0$) પર દોરેલી બે ભિન્ન જીવાઓ $x-$અક્ષ દ્વારા દુભાગે છે તો ....
બિંદુ $ (17, 7)$ માંથી વર્તૂળ $ x^2 + y^2 = 169 $ પર સ્પર્શકો દોર્યો
વિધાન $- 1 :$ આ સ્પર્શકો પરસ્પર લંબ છે.
વિધાન $- 2 :$ વર્તૂળ $ x^2 + y^2 = 338$ પરના દરેક બિંદુએથી આપેલ વર્તુળ પર લંબ સ્પર્શકો દોરી શકાય.
કેન્દ્ર $(2,3)$ અને ત્રિજ્યા $4$ વાળું વર્તુળ રેખા $x+y=3$ ને બિંદુઓ $P$ અને $Q$ માં છેદે છે. જો $P$ અને $Q$ પાસેના સ્પર્શકો બિંદુ $S(\alpha, \beta)$ માં છેદે, તો $4 \alpha-7 \beta=....................$
બિંદુ$\left( {\frac{1}{{\sqrt 2 }},\,\frac{1}{{\sqrt 2 }}} \right)$ માંથી વર્તૂળ $x^2 + y^2 = 9$ ના અભિલબનું સમીકરણ....