वृत्त ${x^2} + {y^2} = {a^2}$ के एक बिन्दु से, वृत्त ${x^2} + {y^2} = {a^2}{\sin ^2}\alpha $ पर दो स्पर्श रेखायें खींची जाती हैं, तब उनके मध्य का कोण है
$\frac{\alpha }{2}$
$\alpha $
$2\alpha $
इनमें से कोई नहीं
वृत्त ${x^2} + {y^2} = {a^2}$ की स्पर्श रेखा का समीकरण, जो $y = mx + c$ के समान्तर हो, है
$\mathrm{a}^2$ के सभी मानों, जिनके लिए रेखा $\mathrm{x}+\mathrm{y}=0$, वृत $2 x^2+2 y^2-(1+a) x-(1-a) y=0$ के बिंदु $\mathrm{P}\left(\frac{1+\mathrm{a}}{2}, \frac{1-\mathrm{a}}{2}\right)$ से खींची गई दो भिन्न जीवाओं को समद्विभाजित करती है, का समुच्चय बराबर है:
रेखा $lx + my + n = 0$, वृत्त ${x^2} + {y^2} = {a^2}$ की एक स्पर्श रेखा होगी यदि
वृत्त ${x^2} + {y^2} = \frac{{{a^2}{b^2}}}{{{a^2} + {b^2}}}$ के बिन्दु $\left( {\frac{{a{b^2}}}{{{a^2} + {b^2}}},\frac{{{a^2}b}}{{{a^2} + {b^2}}}} \right)$ पर स्पर्श रेखा का समीकरण है
वृत्त, जिसका केन्द्र $(2, -1)$ है, पर मूल बिन्दु से खींची गयी एक स्पर्श रेखा का समीकरण $3x + y = 0$ हो, तो दूसरी स्पर्श रेखा का समीकरण है