वृत्त ${x^2} + {y^2} = \frac{{{a^2}{b^2}}}{{{a^2} + {b^2}}}$ के बिन्दु $\left( {\frac{{a{b^2}}}{{{a^2} + {b^2}}},\frac{{{a^2}b}}{{{a^2} + {b^2}}}} \right)$ पर स्पर्श रेखा का समीकरण है
$\frac{x}{a} + \frac{y}{b} = 1$
$\frac{x}{a} + \frac{y}{b} + 1 = 0$
$\frac{x}{a} - \frac{y}{b} = 1$
$\frac{x}{a} - \frac{y}{b} + 1 = 0$
यदि बिन्दु $(f,g)$ से वृत्तों ${x^2} + {y^2} = 6$ तथा ${x^2} + {y^2} + 3x + 3y = 0$ पर खींची गयी स्पर्श रेखाओं की लम्बाइयों का अनुपात $2 : 1$ हो, तो
यदि त्रिभुज, जो धनात्मक $x$-अक्ष तथा वत्त $( x -2)^{2}+( y -3)^{2}=25$ के बिन्दु $(5,7)$ पर खींचे गए अभिलम्ब तथा स्पर्श रेखा द्वारा बनता है, का क्षेत्रफल $A$ है, तो $24 A$ बराबर है
रेखा $y = mx + c$ उस वृत्त की, जिसकी त्रिज्या $r$ तथा केन्द्र $(a, b)$ है, अभिलम्ब होगी यदि
वृत्त ${x^2} + {y^2} = {a^2}$ पर बिन्दु $(\alpha ,\beta )$ से खींची गयी स्पर्श रेखाओं के बीच कोण है
यदि $a > 2b > 0$ तब $m$ का धनात्मक मान जिसके लिए $y = mx - b\sqrt {1 + {m^2}} $, वृत्तों ${x^2} + {y^2} = {b^2}$ तथा ${(x - a)^2} + {y^2} = {b^2}$ की उभयनिष्ठ स्पर्श रेखा है