From any point on the circle ${x^2} + {y^2} = {a^2}$ tangents are drawn to the circle ${x^2} + {y^2} = {a^2}{\sin ^2}\alpha $, the angle between them is
$\frac{\alpha }{2}$
$\alpha $
$2\alpha $
None of these
The equations of the tangents to the circle ${x^2} + {y^2} - 6x + 4y = 12$ which are parallel to the straight line $4x + 3y + 5 = 0$, are
Two tangents are drawn from the point $\mathrm{P}(-1,1)$ to the circle $\mathrm{x}^{2}+\mathrm{y}^{2}-2 \mathrm{x}-6 \mathrm{y}+6=0$. If these tangents touch the circle at points $A$ and $B$, and if $D$ is a point on the circle such that length of the segments $A B$ and $A D$ are equal, then the area of the triangle $A B D$ is eqaul to:
The two tangents to a circle from an external point are always
Tangents are drawn from the point $(-1,-4)$ to the circle $x^2 + y^2 - 2x + 4y + 1 = 0$. Length of corresponding chord of contact will be-
If a line passing through origin touches the circle ${(x - 4)^2} + {(y + 5)^2} = 25$, then its slope should be