यदि आवृत्ति, घनत्व $(\rho )$ लंबाई $(a)$ तथा पृष्ठ-तनाव $(T)$ का फलन हो तो इसका मान होगा

  • A

    $k\,{\rho ^{1/2}}{a^{3/2}}/\sqrt T $

  • B

    $k\,{\rho ^{3/2}}{a^{3/2}}/\sqrt T $

  • C

    $k\,{\rho ^{1/2}}{a^{3/2}}/{T^{3/4}}$

  • D

    $k\,{\rho ^{1/2}}{a^{1/2}}/{T^{3/2}}$

Similar Questions

यदि बल $( F )$, वेग $( v )$ तथा समय $( T )$ को मूल मात्रक मान लिया जायेतो, द्रव्यमान की विमायें होंगी

  • [AIPMT 2014]

ऊर्जा का $SI$ मात्रक $J = kg\, m ^{2} s ^{-2}$ है, चाल $v$ का $m s ^{-1}$ और त्वरण $a$ का $m s ^{-2}$ है। गतिज ऊर्जा $(k)$ के लिए निम्नलिखित सूत्रों में आप किस-किस को विमीय दृष्टि से गलत बताएँगे ? $(m$ पिण्ड का द्रव्यमान है )।

$(a)$ $K=m^{2} v^{3}$

$(b)$ $K=(1 / 2) m v^{2}$

$(c)$ $K=m a$

$(d)$ $K=(3 / 16) m w^{2}$

$(e)$ $K=(1 / 2) m v^{2}+m a$

किसी पुस्तक में, जिसमें छपाई की अनेक त्रुटीयां हैं, आवर्त गति कर रहे किसी कण के विस्थापन के चार भिन्न सूत्र दिए गए हैं 

$(a)\;y=a \sin \left(\frac{2 \pi t}{T}\right)$

$(b)\;y=a \sin v t$

$(c)\;y=\left(\frac{a}{T}\right) \sin \frac{t}{a}$

$(d)\;y=(a \sqrt{2})\left(\sin \frac{2 \pi t}{T}+\cos \frac{2 \pi t}{T}\right)$

$(a=$ कण का अधिकतम विस्थापन, $v=$ कण की चाल, $T=$ गति का आवर्त काल ) । विमीय आधारों पर गलत सूत्रों को निकाल दीजिए |

विमीय विश्लेषण की नींव किसके द्वारा रखी गयी

यदि $M = $द्रव्यमान, $L = $लम्बाई, $T = $समय तथा $I = $विद्युत धारा तथा यदि $[{\varepsilon _0}]$निर्वात की विद्युतशीलता तथा $[{\mu _0}]$ निर्वात की चुम्बकशीलता की विमा को प्रदर्शित करें तो $M,L,T$ तथा $I$ के पदों में सही विमीय सूत्र है। जहाँ संकेतों के सामान्य अर्थ हैं

  • [IIT 1998]