Frequency is the function of density $(\rho )$, length $(a)$ and surface tension $(T)$. Then its value is
$k{\rho ^{1/2}}{a^{3/2}}{\bf{/}}\sqrt T $
$k{\rho ^{3/2}}{a^{3/2}}/\sqrt T $
$k{\rho ^{1/2}}{a^{3/2}}/{T^{3/4}}$
$k{\rho ^{1/2}}{a^{1/2}}/{T^{3/2}}$
If $P$ represents radiation pressure, $c$ represents speed of light and $Q$ represents radiation energy striking a unit area per second, then non-zero integers $x,\,y$ and $z$ such that ${P^x}{Q^y}{c^z}$ is dimensionless, are
The $SI$ unit of energy is $J=k g\, m^{2} \,s^{-2} ;$ that of speed $v$ is $m s^{-1}$ and of acceleration $a$ is $m s ^{-2} .$ Which of the formulae for kinetic energy $(K)$ given below can you rule out on the basis of dimensional arguments ( $m$ stands for the mass of the body ):
$(a)$ $K=m^{2} v^{3}$
$(b)$ $K=(1 / 2) m v^{2}$
$(c)$ $K=m a$
$(d)$ $K=(3 / 16) m v^{2}$
$(e)$ $K=(1 / 2) m v^{2}+m a$
The foundations of dimensional analysis were laid down by
The frequency $(v)$ of an oscillating liquid drop may depend upon radius $(r)$ of the drop, density $(\rho)$ of liquid and the surface tension $(s)$ of the liquid as : $v=r^{ a } \rho^{ b } s ^{ c }$. The values of $a , b$ and $c$ respectively are