किसी वर्ग के चार कोनों पर बिन्दु आवेश $-Q,-q, 2 q$ तथा $2 Q$ क्रमशः रखे गये हैं। $Q$ तथा $q$ के बीच क्या संबंध होना चाहिये, ताकि वर्ग के केन्द्र पर विभव शून्य हो जाए :
$Q = - q$
$Q=-$$\;\frac{1}{q}$
$\;Q = q$
$Q=$$\frac{1}{q}$ $\;$
$r$ तथा $R$ त्रिज्या $( > r)$ के दो संकेन्द्रीय एवं खोखले गोलों पर आवेश $Q$ इस प्रकार से वितरित है कि इनके पृष्ठीय आवेश घनत्व समान हैं। इनके उभयनिष्ठ केन्द्र पर विभव होगा
$10$ सेमी त्रिज्या के एक खोखले धातु के गोले को $3.2×10^{-19}$ कूलॉम आवेश दिया जाता है। केन्द्र से $4\, cm$ दूरी पर स्थित बिन्दु पर विद्युत विभव होगा
$9 \times 10^{-13} \mathrm{~cm}$ त्रिज्या के एक परमाणु नाभिक $(\mathrm{z}=50)$ के पृष्ठ पर वैद्युत विभव . . . . . . . . $\times 10^6 \hat{V}$ है।
एक बिन्दु आवेश के कारण किसी बिन्दु पर विभव का मान होगा
$8$ सेमी भुजा के एक वर्ग के चारों कोनों पर $ + \frac{{10}}{3} \times {10^{ - 9}}C$ के आवेश में रखे गये हैं। विकर्णों के प्रतिच्छेद बिन्दु पर विभव होगा