$8$ सेमी भुजा के एक वर्ग के चारों कोनों पर $ + \frac{{10}}{3} \times {10^{ - 9}}C$ के आवेश में रखे गये हैं। विकर्णों के प्रतिच्छेद बिन्दु पर विभव होगा
$150\sqrt 2 \,$ वोल्ट
$1500\sqrt 2 \,$ वोल्ट
$900\sqrt 2 \,$ वोल्ट
$900\,$ वोल्ट
किसी ($R$) त्रिज्या वाले आवेशित चालक गोले के केन्द्र से त्रिज्मीय दूरी $(\mathrm{r})$ के साथ विधुत विभव $(\mathrm{V})$ में परिवर्तनों को निम्न में से कौन सा विकल्प सही निरूपित करता है ?
एक चालक गोले की त्रिज्या $R$ है। इस पर $Q$ आवेश है। गोले के केन्द्र पर विधुत विभत तथा विधुत क्षेत्र क्रमशः हैं
$5 \times 10^{-9} \mathrm{C}$ वाले बिंदु आवेश के कारण, बिंदु $'P'$ पर विद्युत विभव $50 \mathrm{~V}$ है। बिंदु 'P' की बिंदु आवेश से दूरी है: ........$cm$
(माना, $\frac{1}{4 \pi \varepsilon_0}=9 \times 10^{+9} \mathrm{Nm}^2 \mathrm{C}^{-2}$ )
${R_1}$ व ${R_2}$ त्रिज्याओं वाले दो धात्विक गोलों को समान विभव तक आवेशित किया गया है। गोलों पर आवेशों का अनुपात होगा
एक क्षेत्र में एकसमान स्थिर वैद्युत क्षेत्र उपस्थित है। यहाँ एक बिन्दु $P$ पर केन्द्रित एक गोले के विभिन्न बिन्दुओं पर विभव का मान $589.0 \;V$ व $589.8 \;V$ सीमाओं के बीच पाया जाता है। इस गोले के पृष्ठ पर वह बिन्दु, जिसका त्रिज्या वेक्टर विद्युत क्षेत्र से $60^{\circ}$ का कोण बनाता है, पर विभव का मान क्या होगा ?