$8$ सेमी भुजा के एक वर्ग के चारों कोनों पर $ + \frac{{10}}{3} \times {10^{ - 9}}C$ के आवेश में रखे गये हैं। विकर्णों के प्रतिच्छेद बिन्दु पर विभव होगा
$150\sqrt 2 \,$ वोल्ट
$1500\sqrt 2 \,$ वोल्ट
$900\sqrt 2 \,$ वोल्ट
$900\,$ वोल्ट
$R$ त्रिज्या के वृत्त पर $10$ इलेक्ट्रॉन एक दूसरे से समान दूरी पर स्थित हैं। अनन्त पर $V = 0$ के सापेक्ष केन्द्र $C$ पर विद्युत विभव $V$ व विद्युत क्षेत्र $E$ होंगे
धातुओं के बने हुए दो गोलाकार समकेन्द्रीय खोलों की त्रिज्या $R$ और $4 R$ है तथा इन पर क्रमश: $Q _{1}$ और $Q _{2}$ आवेश हैं। यदि दोनों खोलों पर सतहीय आवेश घनत्व (surface charge density) समान हो तो विभवान्तर $V ( R )- V (4 R )$ का मान है :
$R_{1}$ एवं $R_{2}$ त्रिज्याओं $\left(R_{1}>>R_{2}\right)$ वाले दो खोखले चालक गोलों पर समान आवेश है। तो विभव का मान होगा :
एक पतले गोलीय कोश (shell) का केन्द्र उद्गम पर है व त्रिज्या $R$ है। उस पर धनावेश इस प्रकार वितरीत है कि पष्ठ-घनत्व एकसमान है। विधुत क्षेत्र के मान $|\vec{E}(r)|$ और विधुत -विभव $V(r)$ का , केन्द्र से दूरी $r$ के साथ बदलाव का सर्वोत्तम वर्णन किस ग्राफ में है।
दो बिन्दु आवेश $-Q$ और $+Q / \sqrt{3} xy$-समतल पर क्रमशः मूल बिन्दु $(0,0)$ तथा एक बिन्दु $(2,0)$ पर रखे हैं, जैसा कि चित्र में दर्शाया गया है। इसके फलस्वरूप $xy$-समतल पर त्रिज्या $R$ तथा विभव $V =0$ का एक समविभव (equipotential) वृत्त बनता है जिसका केन्द्र $(b, 0)$ है। सभी लम्बाईयों की इकाई मीटर (meter) में है।
($1$) $R$ का मान. . . . मीटर है।
($2$) $b$ का मान. . . .मीटर है।
दिये गए सवाल का जवाब दीजिये ($1$) और ($2$)