$r$ तथा $R$ त्रिज्या $( > r)$ के दो संकेन्द्रीय एवं खोखले गोलों पर आवेश $Q$ इस प्रकार से वितरित है कि इनके पृष्ठीय आवेश घनत्व समान हैं। इनके उभयनिष्ठ केन्द्र पर विभव होगा

  • [AIEEE 2012]
  • [IIT 1981]
  • [JEE MAIN 2020]
  • A

    $\frac{1}{{4\pi {\varepsilon _0}}}\frac{{\left( {R - r} \right)Q}}{{\left( {{R^2} + {r^2}} \right)}}$

  • B

    $\frac{1}{{4\pi {\varepsilon _0}}}\frac{{\left( {R + r} \right)Q}}{{2\left( {{R^3} + {r^3}} \right)}}$

  • C

    $\frac{1}{{4\pi {\varepsilon _0}}}\frac{{\left( {R + r} \right)Q}}{{\left( {{R^2} + {r^2}} \right)}}$

  • D

    $\frac{1}{{4\pi {\varepsilon _0}}}\frac{{\left( {R - r} \right)Q}}{{2\left( {{R^2} + {r^2}} \right)}}$

Similar Questions

आवेश $Q$ वाले एक ठोस चालकीय गोले को एक अनावेशित चालकीय खोखले गोलीय कवच से घेरा गया है। ठोस गोले के पृष्ठ और खोखले कवच के बाह्म पृष्ठ के बीच विभवान्तर $V$ है। यदि कवच को अब एक आवेश $-4 Q$ दिया जाता है, तब उन्ही दोनों पृष्ठों के बीच नया विभवान्तर ........$V$ होगा।

  • [JEE MAIN 2019]

दो स्थिर, विपरीत आवेशों को मिलाने वाली रेखा पर स्थित बिन्दुओं पर विचार करें। आवेशों के मध्य

दो आवेशित अवरोधी गोलाकारों की त्रिज्या क्रमश: $20\,cm$ और $25\,cm$ है और दोनों पर समान वैद्युत आवेश $Q$ है। इन्हेंं तांबे के तार के साथ संयोजित किया गया है

$125$ छोटी-छोटी पारे की बूँदों को मिलाकर एक बड़ी बूँद बनायी गयी है। इस पर विभव $2.5\, V$ है। प्रत्येक छोटी बूँद पर विभव .......$V$ होगा

प्रत्येक $10\,V$ तक आवेशित पारे की $64$ बूँदों को मिलाकर एक बड़ी बूँद बनायी गयी है। बड़ी बूँद पर विभव ........$V$ होगा (प्रत्येक बूँद गोलाकार मानी जाये)