एक बिन्दु आवेश के कारण किसी बिन्दु पर विभव का मान होगा
दूरी के वर्ग के व्युत्क्रमानुपाती
दूरी के वर्ग के समानुपाती
दूरी के व्युत्क्रमानुपाती
दूरी के समानुपाती
एक समद्विबाहु त्रिभुज के $B$ व $C$ शीर्षों पर $ + \,q$ तथा $ - \,q$ आवेश रखे गये हैं शीर्ष $A$ पर विभव होगा
एक साबुन के बुलबुले जिसका विभव $16\,V$ है, की त्रिज्या दुगनी कर दी जाये तो, बुलबुले का नया विभव ........$V$ हो जायेगा
$9.0×{10^{ - 13}}$ सेमी त्रिज्या वाले परमाणवीय नाभिक $(Z = 50)$ की सतह पर विद्युत विभव
दो बिन्दु आवेश $-Q$ और $+Q / \sqrt{3} xy$-समतल पर क्रमशः मूल बिन्दु $(0,0)$ तथा एक बिन्दु $(2,0)$ पर रखे हैं, जैसा कि चित्र में दर्शाया गया है। इसके फलस्वरूप $xy$-समतल पर त्रिज्या $R$ तथा विभव $V =0$ का एक समविभव (equipotential) वृत्त बनता है जिसका केन्द्र $(b, 0)$ है। सभी लम्बाईयों की इकाई मीटर (meter) में है।
($1$) $R$ का मान. . . . मीटर है।
($2$) $b$ का मान. . . .मीटर है।
दिये गए सवाल का जवाब दीजिये ($1$) और ($2$)
मान लें व्योम में एक विध्युत क्षेत्र $\vec{E}=30 x^{2} \hat{i}$ है। तब विभवान्तर $V_{A}-V_{O}$ जहाँ $V_{O}$ मूलबिन्दु पर विभव एवं $V_{A}, x=2 \,m$ पर विभव ....$V$ है।