चार द्रव्यमान रहित स्प्रिंगों के बल नियतांक क्रमश: $2k, 2k, k$ एवं $2k$ हैं। ये चित्रानुसार घर्षण रहित तल पर स्थित एक द्रव्यमान $M$ से जुड़ी है। यदि द्रव्यमान $M$ को क्षैतिज दिशा में विस्थापित कर दिया जाये तब दोलनों का आवर्तकाल होगा

96-102

  • A

    $\frac{1}{{2\pi }}\sqrt {\frac{k}{{4M}}} $

  • B

    $\frac{1}{{2\pi }}\sqrt {\frac{{4k}}{M}} $

  • C

    $\frac{1}{{2\pi }}\sqrt {\frac{k}{{7M}}} $

  • D

    $\frac{1}{{2\pi }}\sqrt {\frac{{7k}}{M}} $

Similar Questions

$15\, g$ द्रव्यमान की एक गेंद एक स्प्रिंग वाली बंदूक से दागी जाती है। ​स्प्रिंग का स्प्रिंग नियतांक $600 \,N/m$ हैं। यदि स्प्रिंग $5 \,cm$ तक संपीडित होती है। तो गेंद के द्वारा प्राप्त अधिकतम क्षैतिज परास .... $m$ होगी ($g = 10\, m/S^{2}$)

चित्र में दर्शाए अवमदित दोलक के लिए गुटके का द्रव्यमान $m=200\, g . k =90\, N\, m ^{-1}$ तथा अवमंदन स्थिरांक $b=40 g s ^{-1}$ है ।

$(a)$ दोलन का आवर्तकाल.

$(b)$ वह समय जिसमें इसके कंपन का आयाम अपने आरंभिक मान का आधा रह जाता है तथा

$(c)$ वह समय जिसमें यांत्रिक ऊर्जा अपने आरंभिक मान की आधी रह जाती है, परिकलित कीजिए

एक $m = 100$ ग्राम संहति वाले पिण्ड को एक हल्की ​स्प्रिंग् के एक सिरे से जोड़ दिया जाता है। स्प्रिंग् एक घर्षणहीन क्षैतिज टेबिल पर दोलन करती है। दोलनों का आयाम $0.16$ मीटर और आवर्तकाल $2$ सैकण्ड है। प्रारम्भ में $t = 0$ सैकण्ड पर जबकि विस्थापन $x =  - 0.16$ मीटर है, पिण्ड को छोड़ा जाता है, तो पिण्ड के विस्थापन का किसी समय $(t)$ पर सूत्र होगा

समान स्प्रिंग् नियतांक $k$ वाली दो स्प्रिंगों को श्रेणीक्रम में जोड़ा जाता है तथा बाद में समान्तर क्रम में जोड़ते हैं। यदि इनसे $m$द्रव्यमान का पिण्ड लटका है तो उनकी ऊध्र्वाधर दोलनों की आवृत्तियों का अनुपात होगा

यदि दो सर्वसम कमानियों, जिनमें प्रत्येक का कमानी स्थिरांक $K _{1}$ हैं, को श्रेणी में संयोजित किया गया है, तो नया कमानी स्थिरांक और आवर्तकाल किस गुणांक से परिवर्तित होंगे ?

  • [JEE MAIN 2021]