एक $m = 100$ ग्राम संहति वाले पिण्ड को एक हल्की ​स्प्रिंग् के एक सिरे से जोड़ दिया जाता है। स्प्रिंग् एक घर्षणहीन क्षैतिज टेबिल पर दोलन करती है। दोलनों का आयाम $0.16$ मीटर और आवर्तकाल $2$ सैकण्ड है। प्रारम्भ में $t = 0$ सैकण्ड पर जबकि विस्थापन $x =  - 0.16$ मीटर है, पिण्ड को छोड़ा जाता है, तो पिण्ड के विस्थापन का किसी समय $(t)$ पर सूत्र होगा

  • A

    $x = 0.16\cos (\pi t)$

  • B

    $x = - \,0.16\cos (\pi t)$

  • C

    $x = 0.16\sin (\pi t + \pi )$

  • D

    $x = - \,0.16\sin (\pi t + \pi )$

Similar Questions

एक स्प्रिंग से जुड़ा हुआ $1 \;kg$ का एक गुटका $1 \;Hz$ की आवृत्ति से एक घर्षणहीन क्षैतिज मेज पर दोलन करता है। इसी तरह की दो समान्तर स्प्रिंगों से एक $8 \;kg$ का गुटका जोड़कर उसी मेज पर दोलन कराते हैं। $8 \;kg$ के गुटके की दोलन आवृत्ति होगी $\dots \; Hz$

  • [JEE MAIN 2017]

किसी कमानी से लटका एक पिण्ड एक क्षैतिज तल में कोणीय वेग $\omega$ से घर्षण या अवमंदन रहित दोलन कर सकता है। इसे जब $x_{0}$ दूरी तक खींचते हैं और खींचकर छोड़ देते हैं तो यह संतुलन केन्द्र से समय $t=0$ पर $v_{0}$ वेग से गुजरता है। प्राचल $\omega . x_{0}$ तथा $v_{0}$ के पदों में परिणामी दोलन का आयाम ज्ञात करिये। [संकेत: समीकरण $x=a \cos (\omega t+\theta)$ से प्रारंभ कीजिए। ध्यान रहे कि प्रारंभिक वेग ऋणात्मक है। ]

किसी ​स्प्रिंग से लटके $m$ द्रव्यमान का आवर्तकाल $2$ सैकण्ड है तब $4m$ द्रव्यमान का आवर्तकाल  .... सैकण्ड होगा

  • [AIIMS 1998]

$2 \mathrm{~kg}$ के एक गुटके को दो एक समान स्प्रिंगों से जोड़ा गया है जिनमें प्रत्येक का स्प्रिंग नियतांक 20 $\mathrm{N} / \mathrm{m}$ है। गुटका एक घर्षणरहित तल पर रखा है और स्प्रिंगों के मुक्त सिरों को दृढ़ आधारों से जोड़ा गया है (चित्र देखिए)। जब गुटके को साम्यावस्था से खिसका दिया जाता है, तब यह सरल आवर्त गति करने लगता है। दोलन का आवर्तकाल SI मात्रक में $\frac{\pi}{\sqrt{\mathrm{x}}}$ है। $\mathrm{x}$ का मान____________ है।

  • [JEE MAIN 2023]

पाँच एक समान स्प्रिंगों के निम्न तीन संयोजन चित्र में उपयोग किया गया हैं। संयोजन (i) (ii) तथा (iii) में ऊध्र्वाधर दोलनों के आवर्तकाल का अनुपात होगा