For the three events $A, B$ and $C, P$ (exactly one of the events $A$ or $B$ occurs) = $P$ (exactly one of the events $B$ or $C$ occurs)= $P$ (exactly one of the events $C$ or $A$ occurs)= $p$ and $P$ (all the three events occur simultaneously) $ = {p^2},$ where $0 < p < 1/2$. Then the probability of at least one of the three events $A, B$ and $C$ occurring is
$\frac{{3p + 2{p^2}}}{2}$
$\frac{{p + 3{p^2}}}{4}$
$\frac{{p + 3{p^2}}}{2}$
$\frac{{3p + 2{p^2}}}{4}$
Three persons $P, Q$ and $R$ independently try to hit a target . If the probabilities of their hitting the target are $\frac{3}{4},\frac{1}{2}$ and $\frac{5}{8}$ respectively, then the probability that the target is hit by $P$ or $Q$ but not by $R$ is
Given two independent events $A$ and $B$ such $P(A)=0.3,\,P(B)=0.6 .$ Find $P($ neither $A$or $B)$
A party of $23$ persons take their seats at a round table. The odds against two persons sitting together are
If $P(A) = \frac{1}{2},\,\,P(B) = \frac{1}{3}$ and $P(A \cap B) = \frac{7}{{12}},$ then the value of $P\,(A' \cap B')$ is
$A$ and $B$ are events such that $P(A)=0.42$, $P(B)=0.48$ and $P(A$ and $B)=0.16 .$ Determine $P ($ not $B).$