For the three events $A, B$ and $C, P$ (exactly one of the events $A$ or $B$ occurs) = $P$ (exactly one of the events $B$ or $C$ occurs)= $P$ (exactly one of the events $C$ or $A$ occurs)= $p$ and $P$ (all the three events occur simultaneously) $ = {p^2},$ where $0 < p < 1/2$. Then the probability of at least one of the three events $A, B$ and $C$ occurring is

  • [IIT 1996]
  • A

    $\frac{{3p + 2{p^2}}}{2}$

  • B

    $\frac{{p + 3{p^2}}}{4}$

  • C

    $\frac{{p + 3{p^2}}}{2}$

  • D

    $\frac{{3p + 2{p^2}}}{4}$

Similar Questions

A card is drawn from a pack of $52$ cards. A gambler bets that it is a spade or an ace. What are the odds against his winning this bet

In a hostel, $60 \%$ of the students read Hindi newspaper, $40 \%$ read English newspaper and $20 \%$ read both Hindi and English newspapers. A student is selected at random. If she reads English newspaper, find the probability that she reads Hindi newspaper.

If the odds in favour of an event be $3 : 5$, then the probability of non-occurrence of the event is

If $E$ and $F$ are events such that $P ( E )=\frac{1}{4}$, $P ( F )=\frac{1}{2}$ and $P(E$ and $F )=\frac{1}{8},$ find : $P ( E$ or  $F )$

If the odds against an event be $2 : 3$, then the probability of its occurrence is