A party of $23$ persons take their seats at a round table. The odds against two persons sitting together are
$10:1$
$1:11$
$9:10$
None of these
Let $A$ and $B$ be two events such that $P\,(A) = 0.3$ and $P\,(A \cup B) = 0.8$. If $A$ and $B$ are independent events, then $P(B) = $
The probability that a man will be alive in $20$ years is $\frac{3}{5}$ and the probability that his wife will be alive in $20$ years is $\frac{2}{3}$. Then the probability that at least one will be alive in $20$ years, is
A box of oranges is inspected by examining three randomly selected oranges drawn without replacement. If all the three oranges are good, the box is approved for sale, otherwise, it is rejected. Find the probability that a box containing $15$ oranges out of which $12$ are good and $3$ are bad ones will be approved for sale.
If odds against solving a question by three students are $2 : 1 , 5:2$ and $5:3$ respectively, then probability that the question is solved only by one student is
For three events $A,B $ and $C$ ,$P ($ Exactly one of $A$ or $B$ occurs$)\, =\, P ($ Exactly one of $C$ or $A$ occurs $) =$ $\frac{1}{4}$ and $P ($ All the three events occur simultaneously $) =$ $\frac{1}{16}$ Then the probability that at least one of the events occurs is :