If $P(A) = \frac{1}{2},\,\,P(B) = \frac{1}{3}$ and $P(A \cap B) = \frac{7}{{12}},$ then the value of $P\,(A' \cap B')$ is
$\frac{7}{{12}}$
$\frac{3}{4}$
$\frac{1}{4}$
$\frac{1}{6}$
A coin is tossed twice. If events $A$ and $B$ are defined as :$A =$ head on first toss, $B = $ head on second toss. Then the probability of $A \cup B = $
If $P(A) = 0.25,\,\,P(B) = 0.50$ and $P(A \cap B) = 0.14,$ then $P(A \cap \bar B)$ is equal to
Given two independent events $A$ and $B$ such $P(A)=0.3,\,P(B)=0.6 .$ Find $P($ neither $A$or $B)$
Let $X$ and $Y$ are two events such that $P(X \cup Y=P)\,(X \cap Y).$
Statement $1:$ $P(X \cap Y' = P)\,(X' \cap Y = 0).$
Statement $2:$ $P(X) + P(Y = 2)\,P\,(X \cap Y)$
Two dice are thrown. What is the probability that the sum of the numbers appearing on the two dice is $11$, if $5$ appears on the first