एक रेखा $L$ दो वृत्तों ${x^2} + {y^2} = 25$ व ${x^2} + {y^2} - 8x + 7 = 0$ के प्रतिच्छेद बिन्दुओं से जाती है। दूसरे वृत्त के केन्द्र से इस रेखा $L$ पर डाले गये लम्ब की लम्बाई होगी

  • A

    $4$

  • B

    $3$

  • C

    $1$

  • D

    $0$

Similar Questions

वृत्त ${x^2} + {y^2} + 4x + 6y + 3 = 0$ व $2({x^2} + {y^2}) + 6x + 4y + C = 0$ लम्बवत् काटेंगे यदि  $C =$

वृत्तों $3{x^2} + 3{y^2} - 7x + 8y + 11 = 0$ तथा ${x^2} + {y^2} - 3x - 4y + 5 = 0$ का मूलाक्ष है

वृत्तों ${x^2} + {y^2} = 2ax$ तथा ${x^2} + {y^2} = 2by$ के प्रतिच्छेद बिन्दु हैं

यदि ${x^2} + {y^2} + px + 3y - 5 = 0$ व ${x^2} + {y^2} + 5x$$ + py + 7 = 0$ परस्पर समकोण पर काटते हैं तो $p$ का मान है

$\lambda $ का वह मान जिसके लिये वृत्त ${x^2} + {y^2} + 2\lambda x + 6y + 1 = 0$ व ${x^2} + {y^2} + 4x + 2y = 0$ लम्बवत् प्रतिच्छेदित करते हैं, है