For the given circles ${x^2} + {y^2} - 6x - 2y + 1 = 0$ and ${x^2} + {y^2} + 2x - 8y + 13 = 0$, which of the following is true
One circle lies inside the other
One circle lies completely outside the other
Two circle intersect in two points
They touch each other
The centre of the circle, which cuts orthogonally each of the three circles ${x^2} + {y^2} + 2x + 17y + 4 = 0,$ ${x^2} + {y^2} + 7x + 6y + 11 = 0,$ ${x^2} + {y^2} - x + 22y + 3 = 0$ is
Two circles with equal radii intersecting at the points $(0, 1)$ and $(0, -1).$ The tangent at the point $(0, 1)$ to one of the circles passes through the centre of the other circle. Then the distance between the centres of these circles is
The radical axis of two circles and the line joining their centres are
A circle $C_1$ of radius $2$ touches both $x$ -axis and $y$ -axis. Another circle $C_2$ whose radius is greater than $2$ touches circle $C_1$ and both the axes. Then the radius of circle $C_2$ is-
The line $L$ passes through the points of intersection of the circles ${x^2} + {y^2} = 25$ and ${x^2} + {y^2} - 8x + 7 = 0$. The length of perpendicular from centre of second circle onto the line $L$, is