किसी भी सम्मिश्र संख्या $w =c+i d$ के लिए, मान लीजिए कि $\arg ( w ) \in(-\pi, \pi]$, जहाँ $i=\sqrt{-1}$ है। मान लीजिए कि $\alpha$ और $\beta$ ऐसी वास्तविक संख्याएँ है कि $\arg \left(\frac{z+\alpha}{z+\beta}\right)=\frac{\pi}{4}$ को सन्तुष्ट करने वाली सभी सम्मिश्र संख्याओं $z = x + iy$ के लिए, क्रमित युग्म $( x , y )$ वृत्त

$x ^2+ y ^2+5 x -3 y +4=0 .$ पर स्थित है। तब निम्न कथनों में से कौन सा (से) सत्य है (है)?

$(A)$ $\alpha=-1$  $(B)$ $\alpha \beta=4$   $(C)$ $\alpha \beta=-4$   $(D)$ $\beta=4$

  • [IIT 2021]
  • A

    $A,B$

  • B

    $A,C$

  • C

    $A,D$

  • D

    $B,D$

Similar Questions

माना $\alpha=8-14 i, A=\left\{z \in \mathbb{C}: \frac{\alpha z-\bar{\alpha} \bar{z}}{z^2-(\bar{z})^2-112 i}=1\right\}$ तथा $B=\{z \in \mathbb{C}:|z+3 i|=4\}$ हैं तो $\sum_{\mathrm{z} \in \mathrm{A} \cap \mathrm{B}}(\operatorname{Re} z-\operatorname{Im} z)$ बराबर ___________ है।

  • [JEE MAIN 2023]

सम्मिश्र संख्या $\frac{{1 + \sqrt 3 \,i}}{{\sqrt 3  + i}}$का कोणांक है

माना $S=\left\{Z \in C: \bar{z}=i\left(z^2+\operatorname{Re}(\bar{z})\right)\right\}$ है। तो $\sum_{z \in S}|z|^2$ बराबर है

  • [JEE MAIN 2023]

यदि $\mathrm{z}=\frac{1}{2}-2 \mathrm{i}$, के लिए $|\mathrm{z}+1|=\alpha \mathrm{z}+\beta(1+\mathrm{i}), \mathrm{i}=\sqrt{-1} $है जहाँ $ \alpha, \beta \in \mathrm{R} \text {, }$ है तो $\alpha+\beta$ बराबर है

  • [JEE MAIN 2024]

माना दो सम्मिश्र संख्याओं $z$ तथा $w$ के लिए $w = zz -2 z +2,\left|\frac{ z + i }{ z -3 i }\right|=1$ हैं तथा $\operatorname{Re}( w )$ का मान निम्नतम है। तो $n \in N$ का निम्नतम मान, जिसके लिए $w ^{ n }$ वास्तविक है, बराबर ........... है |

  • [JEE MAIN 2021]