माना $\alpha=8-14 i, A=\left\{z \in \mathbb{C}: \frac{\alpha z-\bar{\alpha} \bar{z}}{z^2-(\bar{z})^2-112 i}=1\right\}$ तथा $B=\{z \in \mathbb{C}:|z+3 i|=4\}$ हैं तो $\sum_{\mathrm{z} \in \mathrm{A} \cap \mathrm{B}}(\operatorname{Re} z-\operatorname{Im} z)$ बराबर ___________ है।

  • [JEE MAIN 2023]
  • A

    $14$

  • B

    $13$

  • C

    $12$

  • D

    $11$

Similar Questions

माना कि $\bar{z}$ एक सम्मिश्र संख्या (complex number) $z$ के सम्मिश्र संयुग्मी (complex conjugate) को निरूपित करता है एवं $i=\sqrt{-1}$ है। सम्मिश्र संख्याओं के सम्मुचय (set of complex numbers) में, समीकरण $\bar{z}-z^2=i\left(\bar{z}+z^2\right)$ के भिन्न मूलों (distinct roots) की संख्या. . . . . .है।

  • [IIT 2022]

यदि $z$ एक ऐसी सम्मिश्र संख्या है कि $|z| \geq 2$ है, तो $\mid z+\frac{1}{2} \mid$ का न्यूनतम मान:

  • [JEE MAIN 2014]

माना $a \neq b$ दो शून्येत्तर वास्तविक संख्याएँ है। तो समुच्चय

$X=\left\{z \in C: \operatorname{Re}\left(a z^2+b z\right)=a  \text { and }\operatorname{Re}\left(b z^2+ az \right)= b \right\}$

में अवयवों की संख्या है

  • [JEE MAIN 2023]

यदि $z_1$ तथा ${z_2}$ दो सम्मिश्र संख्याएँ इस प्रकार हैं कि $\left| {\frac{{{z_1} - {z_2}}}{{{z_1} + {z_2}}}} \right| = 1$ तथा $i{z_1} = k{z_2}$, जहाँ $k \in R$, तब${z_1} - {z_2}$ तथा ${z_1} + {z_2}$ के मध्य कोण है

यदि $z$ एक ऐसी सम्मिश्र संख्या है जिसका मापांक $1$ है तथा कोणांक $\theta$, तब कोणांक $\left(\frac{1+z}{1+\bar{z}}\right)$ बराबर है

  • [JEE MAIN 2013]