किसी बारम्बारता बंटन के लिये मानक विचलन की गणना निम्न में से किस सूत्र द्वारा करते हैं

  • A
    $\sigma = \sqrt {\left( {\frac{{\sum \,fd}}{{\sum \,f}}} \right) - \frac{{\sum \,f{d^2}}}{{\sum \,f}}} $
  • B
    $\sigma = \sqrt {\frac{{\sum \,f{d^2}}}{{\sum \,f}} - {{\left( {\frac{{\sum \,f{d^2}}}{{\sum \,f}}} \right)}^2}} $
  • C
    $\sigma = \sqrt {{{\left( {\frac{{\sum \,fd}}{{\sum \,f}}} \right)}^2} - \frac{{\sum \,f{d^2}}}{{\sum \,f}}} $
  • D
    $\sigma = \sqrt {\frac{{\sum \,f{d^2}}}{{\sum \,f}} - {{\left( {\frac{{\sum \,fd}}{{\sum \,f}}} \right)}^2}} $

Similar Questions

यदि आठ संख्याओं $3,7,9,12,13,20, x$ तथा $y$ के माध्य तथा प्रसरण क्रमश: $10$ तथा $25$ हैं, तो $x \cdot y$ बराबर हैं

  • [JEE MAIN 2020]

लघु विधि द्वारा माध्य व मानक विचलन ज्ञात कीजिए।

${x_i}$ $60$ $61$ $62$ $63$ $64$ $65$ $66$ $67$ $68$
${f_i}$ $2$ $1$ $12$ $29$ $25$ $12$ $10$ $4$ $5$

बीस प्रेक्षणों का माध्य तथा मानक विचलन क्रमश: $10$ तथा $2$ हैं। जाँच करने पर यह पाया गया कि प्रेक्षण $8$ गलत है। निम्न में से प्रत्येक का सही माध्य तथा मानक विचलन ज्ञात कीजिए यदि

गलत प्रेक्षण हटा दिया जाए।

यदि $\sum_{ i =1}^{ n }\left( x _{ i }- a \right)= n \quad$ तथा $\quad \sum_{ i =1}^{ n }\left( x _{ i }- a \right)^{2}= na$, $( n , a >1)$ हैं, तो $n$ प्रेक्षणों $x _{1}, x _{2}, \ldots, x _{ n }$ का मानक विचलन है 

  • [JEE MAIN 2020]

$10$ प्रेक्षणों के माध्य तथा मानक विचलन क्रमशः $20$ तथा $2$ हैं। इन $10$ प्रेक्षणों में से प्रत्येक को $p$ से गुणा करने के पश्चात प्रत्येक में से $q$ कम किया गया, जहाँ $p \neq 0$ तथा $q \neq 0$ हैं। यदि नए माध्य तथा मानक विचलन के मान अपने मूल मानों के आधे हैं, तो $q$ का मान हैं 

  • [JEE MAIN 2020]