किसी बारम्बारता बंटन के लिये मानक विचलन की गणना निम्न में से किस सूत्र द्वारा करते हैं

  • A
    $\sigma = \sqrt {\left( {\frac{{\sum \,fd}}{{\sum \,f}}} \right) - \frac{{\sum \,f{d^2}}}{{\sum \,f}}} $
  • B
    $\sigma = \sqrt {\frac{{\sum \,f{d^2}}}{{\sum \,f}} - {{\left( {\frac{{\sum \,f{d^2}}}{{\sum \,f}}} \right)}^2}} $
  • C
    $\sigma = \sqrt {{{\left( {\frac{{\sum \,fd}}{{\sum \,f}}} \right)}^2} - \frac{{\sum \,f{d^2}}}{{\sum \,f}}} $
  • D
    $\sigma = \sqrt {\frac{{\sum \,f{d^2}}}{{\sum \,f}} - {{\left( {\frac{{\sum \,fd}}{{\sum \,f}}} \right)}^2}} $

Similar Questions

पहली $50$ सम प्राकृत संख्याओं का प्रसरण है:

  • [JEE MAIN 2014]

माना एक कक्षा में $7$ विद्यार्थी है। गणित परीक्षा में इन छात्रों के औसत अंक $62$ तथा इनका प्रसरण $20$ है। एक विद्यार्थी परीक्षा में अनुत्तीर्ण हो जाता है यदि उसे $50$ से कम अंक प्राप्त होते है, तो सबसे खराब स्थिति में, असफल छात्रों की संख्या हो सकती है

  • [JEE MAIN 2022]

$20$ प्रेक्षणों के माध्य तथा मानक विचलन क्रमश: $10$ तथा $2.5$ निकाले गये। यह पाया गया कि गलती से एक आंकड़ा $35$ की जगह $25$ लिया गया था। यदि सही आकड़ों का माध्य तथा मानक विचलन क्रमशः $\alpha$ तथा $\sqrt{\beta}$ हैं, तो $(\alpha, \beta)$ है

  • [JEE MAIN 2021]

$7$ प्रेक्षणों का माध्य तथा प्रसरण क्रमशः $8$ तथा $16$ हैं। यदि पाँच क्रमशः प्रेक्षण $2,4,10,12,14$ हैं, तो शेष दो प्रेक्षणों का निरपेक्ष अंतर है

  • [JEE MAIN 2020]

माना कि $X$ एक याद्छिक चर (random variable) है, और माना कि $P(X=x), X$ के मान $x$ लेने की प्रायिकता (probability) को दर्शाता है। माना कि बिंदु (points) $(x, P(X=x)), x=0,1,2,3,4, x y$-तल में एक नियत सरल रेखा (fixed straight line) पर स्थित हैं, और सभी $x \in R -\{0,1,2,3,4\}$ के लिए $P(X=x)=0$ है। यदि $X$ का माध्य (mean) $\frac{5}{2}$ है, और $X$ का प्रसरण (variance) $\alpha$ है, तब $24 \alpha$ का मान. . . . .है।

  • [IIT 2024]