किसी बारम्बारता बंटन के लिये मानक विचलन की गणना निम्न में से किस सूत्र द्वारा करते हैं

  • A
    $\sigma = \frac{{\sum f(x - \bar x)}}{{\sum f}}$
  • B
    $\sigma = \frac{{\sqrt {\sum f{{(x - \bar x)}^2}} }}{{\sum f}}$
  • C
    $\sigma = \sqrt {\frac{{\sum f{{(x - \bar x)}^2}}}{{\sum f}}} $
  • D
    $\sigma = \sqrt {\frac{{\sum f(x - \bar x)}}{{\sum f}}} $

Similar Questions

$7$ प्रेक्षणों का माध्य तथा प्रसरण क्रमशः $8$ तथा $16$ हैं। यदि दो प्रेक्षण $6$ तथा $8$ हैं, तो शेष $5$ प्रेक्षणों का प्रसरण है

  • [JEE MAIN 2021]

यदि माध्य विचलन ($M.D.$) $12$ है, तब मानक विचलन है

माना $2 n$ प्रेक्षणों की एक शंखला में, आधे $a$ के बराबर है तथा शेष आधे $- a$ के बराबर है। प्रत्येक प्रेक्षण में एक अचर $b$ जोड़ने पर नये समूह का माध्य तथा मानक विचलन क्रमशः $5$ तथा $20$ हैं। तो $a ^{2}+ b ^{2}$ का मान बराबर है

  • [JEE MAIN 2021]

तीन प्रेक्षणों $a , b$ तथा $c$ का विचार कीजिए, जिनके लिए $b = a + c$ है। यदि $a +2, b +2, c +2$ का मानक विचलन $d$ है, तो निम्न में से कौन सा सत्य है ?

  • [JEE MAIN 2021]

माना $6$ प्रेक्षणों $\mathrm{a}, \mathrm{b}, 68,44,48,60$ के माध्य तथा प्रसरण क्रमशः $55$ तथा $194$ हैं। यदि $\mathrm{a}>\mathrm{b}$ है। तो $\mathrm{a}+3 \mathrm{~b}$ बराबर है

  • [JEE MAIN 2024]