$\root 4 \of {(17 + 12\sqrt 2 )} = $
$\sqrt 2 + 1$
${2^{1/4}}(\sqrt 2 + 1)$
$2\sqrt 2 + 1$
None of these
If ${({a^m})^n} = {a^{{m^n}}}$, then the value of $'m'$ in terms of $'n'$ is
${a^{m{{\log }_a}n}} = $
${{\sqrt 2 } \over {\sqrt {(2 + \sqrt 3 )} - \sqrt {(2 - \sqrt 3 } )}} = $
If ${a^x} = {b^y} = {(ab)^{xy}},$ then $x + y = $
The number of integers $q , 1 \leq q \leq 2021$, such that $\sqrt{ q }$ is rational, and $\frac{1}{ q }$ has a terminating decimal expansion, is