दीर्घवृत्त $4{x^2} + 9{y^2} = 1$ पर वे बिन्दु, जहाँ पर इसकी स्पर्श रेखाएँ, रेखा $8x = 9y$ के समान्तर हैं, है
$\left( {\frac{2}{5},\;\frac{1}{5}} \right)$
$\left( { - \frac{2}{5},\;\frac{1}{5}} \right)$
$\left( { \frac{2}{5},\; - \frac{1}{5}} \right)$
$(b) $ और $ (c)$
किसी दीर्घवृत्त का केन्द्र $C$ एवं $PN$ कोई कोटि है, $A$, $A'$ दीर्घवृत्त के सिरे हैं तो $\frac{{P{N^2}}}{{AN\;.\;A'N}}$ का मान होगा
बिन्दु $(h, 0)$ से गुजरने वाली ऊर्र्वाधर रेखा दीर्घवृत्त $\frac{x^2}{4}+\frac{y^2}{3}=1$ को बिन्दुओं $P$ तथा $Q$ पर काटती है। माना कि बिन्दुओं $P$ तथा $Q$ पर दीर्घवृत्त की स्पर्श रेखाएँ बिन्दु $R$ पर मिलती है। यदि $\Delta(h)=$ त्रिभुज $P Q R$ का क्षेत्रफल $\Delta_1=\max _{1 / 2 \leq h \leq 1} \Delta(h)$ और $\Delta_2=\min _{1 / 2 \leq h \leq 1} \Delta(h)$ है, तब $\frac{8}{\sqrt{5}} \Delta_1-8 \Delta_2=$
दीर्घवृत्त $4{x^2} + 9{y^2} + 8x + 36y + 4 = 0$ की उत्केन्द्रता है
उस दीर्घवृत्त का समीकरण जिसकी नाभियाँ $( \pm 2,\;0)$ तथा उत्केन्द्रता $\frac{1}{2}$है, होगा
माना कि $F_1\left(x_1, 0\right)$ और $F_2\left(x_2, 0\right)$ (जिसमें $x_1<0, x_2>0$ ) दीर्घवृत्त (ellipse) $\frac{x_2^2}{9}+\frac{y^2}{8}=1$ की नाभियाँ (Foci) हैं। माना कि एक परवलय (parabola) जिसका शीर्ष (vertex) मूलबिन्दु (origin) पर और नाभि (focus) $F_2$ पर है, दीर्घवृत्त को प्रथम चतुर्थांश (first quadrant) में $M$ पर और चतुर्थ चतुर्थांश (fourth quadrant) में $N$ पर प्रतिच्छेदित करता है।
($1$) त्रिभुज $F_1 M N$ का लंबकेन्द्र (orthocentre) है
$(A)$ $\left(-\frac{9}{10}, 0\right)$ $(B)$ $\left(\frac{2}{3}, 0\right)$ $(C)$ $\left(\frac{9}{10}, 0\right)$ $(D)$ $\left(\frac{2}{3}, \sqrt{6}\right).$
($2$) यदि दीर्घवृत्त के बिन्दुओं $M$ और $N$ पर स्परिखाएँ (tangents) $R$ पर मिलती हैं और परवलय के बिन्दु $M$ पर अभिलंब $x$-अक्ष को $Q$ पर मिलता है, तब त्रिभुज $M Q R$ के क्षेत्रफल और चतुर्भुज (quadrilateral) $M F_1 N F_2$ के क्षेत्रफल का अनुपात (ratio) है
$(A)$ $3: 4$ $(B)$ $4: 5$ $(C)$ $\sec 5: 8$ $(D)$ $2: 3$
दिये गए सवाल का जवाब दीजिये ($1$) और ($2$)