પાંચ સંખ્યાઓ સમાંતર શ્રેણીમાં છે કે જેનો સરવાળો $25$ થાય અને ગુણાકાર $2520 $ થાય. જો પાંચ પૈકી કોઈ એક સંખ્યા $-\frac{1}{2},$ હોય તો તેમાથી મહતમ સંખ્યા મેળવો.

  • [JEE MAIN 2020]
  • A

    $\frac{21}{2}$

  • B

    $27$

  • C

    $16$

  • D

    $7$

Similar Questions

જો સમાંતર શ્રેણીનું પ્રથમ પદ $3$ છે અને પ્રથમ ચાર પદોનો સરવાળો એ તેના પછીના ચાર પદોના સરવાળા કરતાં $\frac{1}{5}$ ગણા છે તો પ્રથમ $20$ પદોનો સરવાળો મેળવો.

  • [JEE MAIN 2025]

સમાંતર શ્રેણીનાં ત્રણ ક્રમિક પદ પૈકી પ્રથમ પદ અને તૃતીય પદનો સરવાળો $12$ છે તથા પ્રથમ પદ અને દ્વિતીય પદનો ગુણાકાર $ 24$ છે, તો પ્રથમ પદ..... હશે.

સમાંતર શ્રેણીમાં $T_m = n$ અને $T_n = m$ હોય, તો $T_p$ = ……

ધારો કે $x_1, x_2 \ldots, x_{100}$ સમાંતર શ્રેણીમાં છે, જ્યાં $x_1=2$ અને તેઓનો મધ્યક $200$ છે.જો $y_i=i\left(x_i-i\right), 1 \leq i \leq 100$ હોય,તો $y_1, y_2, \ldots, y_{100}$ નો મધ્યક

$..........$ છે.

  • [JEE MAIN 2023]

ચાર સંખ્યાઓ સમાંતર શ્રેણીમાં છે. તેના પહેલાં અને છેલ્લા પદનો સરવાળો $8$ છે અને વચ્ચે બે પદનો ગુણાકાર $15$ છે, તો શ્રેણીની સૌથી નાની સંખ્યા કઈ છે?