પાંચ સંખ્યાઓ સમાંતર શ્રેણીમાં છે કે જેનો સરવાળો $25$ થાય અને ગુણાકાર $2520 $ થાય. જો પાંચ પૈકી કોઈ એક સંખ્યા $-\frac{1}{2},$ હોય તો તેમાથી મહતમ સંખ્યા મેળવો.
$\frac{21}{2}$
$27$
$16$
$7$
સમાંતર શ્રેણીનાં ત્રણ ક્રમિક પદ પૈકી પ્રથમ પદ અને તૃતીય પદનો સરવાળો $12$ છે તથા પ્રથમ પદ અને દ્વિતીય પદનો ગુણાકાર $ 24$ છે, તો પ્રથમ પદ..... હશે.
સમાંતર શ્રેણીમાં $T_m = n$ અને $T_n = m$ હોય, તો $T_p$ = ……
ધારો કે $x_1, x_2 \ldots, x_{100}$ સમાંતર શ્રેણીમાં છે, જ્યાં $x_1=2$ અને તેઓનો મધ્યક $200$ છે.જો $y_i=i\left(x_i-i\right), 1 \leq i \leq 100$ હોય,તો $y_1, y_2, \ldots, y_{100}$ નો મધ્યક
$..........$ છે.
ચાર સંખ્યાઓ સમાંતર શ્રેણીમાં છે. તેના પહેલાં અને છેલ્લા પદનો સરવાળો $8$ છે અને વચ્ચે બે પદનો ગુણાકાર $15$ છે, તો શ્રેણીની સૌથી નાની સંખ્યા કઈ છે?