किसी असतत् श्रेणी में (जबकि सभी मान समान नहीं हैं) माध्य से माध्य विचलन तथा मानक विचलन के मध्य सम्बन्ध है
माध्य विचलन $=$ मानक विचलन
माध्य विचलन $\ge$ मानक विचलन
माध्य विचलन $<$ मानक विचलन
माध्य विचलन $\le$ मानक विचलन
$15$ पदों का मानक विचलन $6$ है। यदि प्रत्येक पद से $1$ घटा दिया जाये, तब मानक विचलन होगा
यदि संख्याओं $2,3, a$ तथा $11$ का मानक विचलन $3.5$ है, तो निम्न में से कौन-सा सत्य है?
यदि $\sum_{ i =1}^{ n }\left( x _{ i }- a \right)= n \quad$ तथा $\quad \sum_{ i =1}^{ n }\left( x _{ i }- a \right)^{2}= na$, $( n , a >1)$ हैं, तो $n$ प्रेक्षणों $x _{1}, x _{2}, \ldots, x _{ n }$ का मानक विचलन है
माना छः संख्याएं $\mathrm{a}_1, \mathrm{a}_2, \mathrm{a}_3, \mathrm{a}_4, \mathrm{a}_5, \mathrm{a}_6$ समान्तर श्रेणी में है और $\mathrm{a}_1+\mathrm{a}_3=10$ है। यदि इन छ: संख्याओं का माध्य $\frac{19}{2}$ है और इनका प्रसरण $\sigma^2$ है, तब $8 \sigma^2$ का मान है :
कक्षा $11$ के एक सेक्शन में छात्रों की ऊँचाई तथा भार के लिए निम्नलिखित परिकलन किए गए हैं
ऊँचाई | भार | |
माध्य | $162.6\,cm$ | $52.36\,kg$ |
प्रसरण | $127.69\,c{m^2}$ | $23.1361\,k{g^2}$ |
क्या हम कह सकते हैं कि भारों में ऊँचाई की तुलना में अधिक विचरण है ?