અન્ય પાંચ ત્રિકોણમિતિય વિધેયોનાં મૂલ્યો શોધો. $\sec x=\frac{13}{5}, x$ ચોથા ચરણમાં છે.
$\sec x=\frac{13}{5}$
$\cos x=\frac{1}{\sec x}=\frac{1}{\left(\frac{13}{5}\right)}=\frac{5}{13}$
$\sin ^{2} x+\cos ^{2}=1$
$\Rightarrow \sin ^{2} x=1-\cos ^{2} x$
$\Rightarrow \sin ^{2} x=1-\left(\frac{5}{13}\right)^{2}$
$\Rightarrow \sin ^{2} x=1-\frac{25}{169}=\frac{144}{169}$
$\Rightarrow \sin x=\pm \frac{12}{13}$
since $x$ lies in the $4^{\text {th }}$ quadrant, the value of $\sin x$ will be negative.
$\therefore \sin x=-\frac{12}{13}$
$\cos ec \,x=\frac{1}{\sin x}=\frac{1}{\left(-\frac{12}{13}\right)}=-\frac{13}{12}$
$\tan x=\frac{\sin x}{\cos x}=\frac{\left(\frac{-12}{13}\right)}{\left(\frac{5}{13}\right)}=-\frac{12}{5}$
$\cot x=\frac{1}{\tan x}=\frac{1}{\left(-\frac{12}{5}\right)}=-\frac{5}{12}$
જો ${\rm{cosec }}A + \cot A = \frac{{11}}{2},$ તો $\tan A = $
જો $A = 130^\circ $ અને $x = \sin A + \cos A,$ તો
$\cos A - \sin A$ જયારે $A = \frac{{5\pi }}{4}, = . . . . $
જો $\left| {\cos \,\theta \,\left\{ {\sin \theta + \sqrt {{{\sin }^2}\theta + {{\sin }^2}\alpha } } \right\}\,} \right|\, \le k,$ તો $k$ ની કિમત મેળવો.
રેડિયન માપ શોધો : $-47^{\circ} 30^{\prime}$