અન્ય પાંચ ત્રિકોણમિતિય વિધેયોનાં મૂલ્યો શોધો. $\sin x=\frac{3}{5}, x$ બીજા ચરમ્રામાં છે. 

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$\sin x=\frac{3}{5}$

$\csc x=\frac{1}{\sin x}=\frac{1}{\left(\frac{3}{5}\right)}=\frac{5}{3}$

$\sin ^{2} x+\cos ^{2} x=1$

$\Rightarrow \cos ^{2} x=1-\sin ^{2} x$

$\Rightarrow \cos ^{2} x=1-\left(\frac{3}{5}\right)^{2}$

$\Rightarrow \cos ^{2} x=1-\frac{9}{25}$

$\Rightarrow \cos ^{2} x=\frac{16}{25}$

$\Rightarrow \cos x=\pm \frac{4}{5}$

since $x$ lies in the $2^{\text {nd }}$ quadrant, the value of $\cos x$ will be negative

$\therefore \cos x=-\frac{4}{5}$

$\sec x=\frac{1}{\cos x}=\frac{1}{\left(-\frac{4}{5}\right)}=-\frac{5}{4}$

$\tan x=\frac{\sin x}{\cos x}=\frac{\left(\frac{3}{5}\right)}{\left(-\frac{4}{5}\right)}=-\frac{3}{4}$

$\cot x=\frac{1}{\tan x}=-\frac{4}{3}$

Similar Questions

જો $\cot \,\theta + \tan \theta = m$ અને $\sec \theta - \cos \theta = n,$ તો આપેલ પૈકી ક્યો સંબંધ સાચો છે ?

અંશ માપ શોધો. ( $\pi=\frac{22}{7}$ લો. ) $-4$

$\cos 15^\circ = $

$\sin 10^\circ + \sin 20^\circ + \sin 30^\circ + ... + $ $\sin 360^\circ  =$

સાબિત કરો કે, $3 \sin \frac{\pi}{6} \sec \frac{\pi}{3}-4 \sin \frac{5 \pi}{6} \cot \frac{\pi}{4}=1$