Find the values of other five trigonometric functions if $\sin x=\frac{3}{5}, x$ lies in second quadrant.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$\sin x=\frac{3}{5}$

$\csc x=\frac{1}{\sin x}=\frac{1}{\left(\frac{3}{5}\right)}=\frac{5}{3}$

$\sin ^{2} x+\cos ^{2} x=1$

$\Rightarrow \cos ^{2} x=1-\sin ^{2} x$

$\Rightarrow \cos ^{2} x=1-\left(\frac{3}{5}\right)^{2}$

$\Rightarrow \cos ^{2} x=1-\frac{9}{25}$

$\Rightarrow \cos ^{2} x=\frac{16}{25}$

$\Rightarrow \cos x=\pm \frac{4}{5}$

since $x$ lies in the $2^{\text {nd }}$ quadrant, the value of $\cos x$ will be negative

$\therefore \cos x=-\frac{4}{5}$

$\sec x=\frac{1}{\cos x}=\frac{1}{\left(-\frac{4}{5}\right)}=-\frac{5}{4}$

$\tan x=\frac{\sin x}{\cos x}=\frac{\left(\frac{3}{5}\right)}{\left(-\frac{4}{5}\right)}=-\frac{3}{4}$

$\cot x=\frac{1}{\tan x}=-\frac{4}{3}$

Similar Questions

The value of $\cot \frac{\pi}{24}$ is :

  • [JEE MAIN 2021]

If $\left| {\,a\,{{\sin }^2}\theta + b\sin \theta \cos \theta + c\,{{\cos }^2}\theta - \frac{1}{2}(a + c)\,} \right|\, \le \frac{1}{2}k,$ then ${k^2}$ is equal to

If $\cot \,\theta + \tan \theta = m$ and $\sec \theta - \cos \theta = n,$ then which of the following is correct

Find the degree measures corresponding to the following radian measures (Use $\pi=\frac{22}{7}$ ).

$-4$

Find the radian measures corresponding to the following degree measures:

$240^{\circ}$