If $\sec \theta + \tan \theta = p,$ then $\tan \theta $ is equal to
$\frac{{2p}}{{{p^2} - 1}}$
$\frac{{{p^2} - 1}}{{2p}}$
$\frac{{{p^2} + 1}}{{2p}}$
$\frac{{2p}}{{{p^2} + 1}}$
If $x = \sec \theta + \tan \theta ,$ then $x + \frac{1}{x} = $
Find the value of:
$\tan 15^{\circ}$
If $a\,{\cos ^3}\alpha + 3a\,\cos \alpha \,{\sin ^2}\alpha = m$ and $a\,{\sin ^3}\alpha + 3a\,{\cos ^2}\alpha \sin \alpha = n,$ then ${(m + n)^{2/3}} + {(m - n)^{2/3}}$ is equal to
If $\cos A = \frac{{\sqrt 3 }}{2},$ then $\tan 3A = $
If ${\sin ^2}\theta = \frac{{{x^2} + {y^2} + 1}}{{2x}}$, then $x$ must be