If $\cot x=-\frac{5}{12}, x$ lies in second quadrant, find the values of other five trigonometric functions.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

 since $\cot x=-\frac{5}{12},$ we have $\tan x=-\frac{12}{5}$

Now      $\sec ^{2} x=1+\tan ^{2} x=1+\frac{144}{25}=\frac{169}{25}$

Hence $\sec x=\pm \frac{13}{5}$

since $x$ lies in second quadrant, sec $x$ will be negative. Therefore

$\sec x=-\frac{13}{5}$

which also gives

$\cos x=-\frac{5}{13}$

Further, we have

$\sin x =\tan x \cos x=\left(-\frac{12}{5}\right) \times\left(-\frac{5}{13}\right)=\frac{12}{13} $

and   $\cos ec\, x =\frac{1}{\sin x}=\frac{13}{12}$

Similar Questions

Find the value of:

$\sin 75^{\circ}$

If $\sin x = \frac{{ - 24}}{{25}},$ then the value of $\tan \, x$ is

Find the radian measures corresponding to the following degree measures:

$240^{\circ}$

Find the degree measures corresponding to the following radian measures (Use $\pi=\frac{22}{7}$ ).

$\frac{11}{16}$

If $x + \frac{1}{x} = 2\cos \alpha $, then ${x^n} + \frac{1}{{{x^n}}} = $